

<u>Chapter – Vector</u>

Fundamentals of Vector

1. The vector projecti(a) 3	on of a vector $3 \hat{i} + 4\hat{j}$ (b) 4	+4 vec k on y-axis is (c) 3	(d) Zero	
=	2. Position of a particle in a rectangular-co-ordinate system is (3, 2, 5). Then its position vector will l			
(a) $3 \hat{i} + 5 \hat{j} + 2 \hat{k}$ (c) $5 \hat{i} + 3 \hat{j} + 2 \hat{k}$	(b) $3 \hat{i} + 2 \hat{j} - (d)$ None of the			
			s displacement vector be	
(a) $\hat{i} + \hat{j} + 10 \hat{k}$ (c) $\hat{i} + \hat{j}$	(b) $\hat{i} + \hat{j} + 5\hat{i}$ (d) $2\hat{i} + 4\hat{j}$			
4. A force of 5 N acts of component be	on a particle along a di	rection making an a	ngle of 60° with vertical. Its vertical	
(a) 10 N	(b) 3 N	(c) 4 N	(d) 2.5 N	
5. If $A = 3 \hat{i} + 4 \hat{j}$ and (a) $5 \hat{i} + 20 \hat{i}$			magnitude as B and parallel to A is (d) $15 \hat{\imath} + 20 \hat{\jmath}$	
6. Vector \overrightarrow{A} makes equal angles with x, y and z axis. Value of its components (in terms of magnitude of \overrightarrow{A}) will be				
(a) $\frac{A}{\sqrt{3}}$	(b) $\frac{A}{\sqrt{2}}$	(c) √3 A	$(d)\frac{\sqrt{3}}{A}$	
7. If $\operatorname{vec} \vec{A} = 2 \hat{\imath} + 4 \hat{\jmath} - 5 \hat{k}$ the direction of cosines of the vector $\operatorname{vec} \vec{A}$ are				
(a) $\frac{2}{\sqrt{45}}$, $\frac{4}{\sqrt{45}}$ and $\frac{-5}{\sqrt{45}}$	V	$\frac{1}{45}$, $\frac{2}{\sqrt{45}}$ and $\frac{3}{\sqrt{45}}$		
(c) $\frac{4}{\sqrt{45}}$, 0 and $\frac{4}{\sqrt{45}}$	$(d)\frac{3}{\sqrt{2}}$	$\frac{3}{45}$, $\frac{2}{\sqrt{45}}$ and $\frac{5}{\sqrt{45}}$		
8. The vector that must be added to the vector $\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$ and $3\hat{\imath} + 6\hat{\jmath} - 7\hat{k}$ so that the resultant vector is a unit vector along the y-axis is				
(a) $4 \hat{i} + 2 \hat{j} + 5 \hat{k}$		$4 \hat{i} - 2 \hat{j} + 5 \hat{k}$		

10. A hall has the dimensions $10m \times 12m \times 14m$. A fly starting at one corner ends up at a diametrically

(d) 5

(b) 3

opposite corner. What is the magnitude of its displacement

(c) $3\hat{i} + 4\hat{j} + 5\hat{k}$

zero resultant

(a) 2

(d) Null vector

9. How many minimum number of coplanar vectors having different magnitudes can be added to give

(c) 4

	(a) 17 m	(b) 26 m	(c) 36 m	(d) 20 m	
	11. 100 coplanar forces each equal to 10 N act on a body. Each force makes angle π / 50 with the preceding force. What is the resultant of the forces				
	(a) 1000 N	(b) 500 N	(c) 250 N	(d) Zero	
	12. The magnitude of a (a) 6	a given vector wit (b) $5\sqrt{2}$	h end points (4, –4, 0) ar (c) 4	and (-2, 2, 0) must be (d) $2\sqrt{10}$	
	13 The expression $\left(\frac{1}{\sqrt{2}}\right)$	$\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ is a			
	(a) Unit vector	V2")	(b) Null vector		
	(c) Vector of magnitud	le √2	(d) Scalar		
	14 Given vector $\overrightarrow{A} = 2$?î+3î the angle	e between \overrightarrow{A} and y-axis is		
	(a) $\tan^{-1} 3/2$	-	(c) $\sin^{-1} 2/3$	(d) $\cos^{-1} 2/3$	
	45 80				
	15. The unit vector alo	-	() () + ()	$(n^{\frac{1}{2}+\frac{1}{2}})$	
	(a) \hat{k}	(b) $\hat{i} + \hat{j}$	$(c)\frac{i+j}{\sqrt{2}}$	$(d)\frac{\iota + \iota}{2}$	
	16. A vector is represe	nted by $3 \hat{i} + \hat{j} +$	$2\hat{k}$. Its length in XY plane	e is	
	(a) 2	(b) $\sqrt{14}$	(c) $\sqrt{10}$	(d) √5	
	17. Five equal forces of	f 10 N each are ar	oplied at one point and all	l are lying in one plane. If the angles	
	between them are equ	-		J 9	
	(a) Zero	(b) 10 N	(c) 20 N	(d) $10\sqrt{2} \text{ N}$	
	18. The angle made by	the vector $A = \hat{i}$	+ î with x-axis is		
	(a) 90 °	(b) 45°	(c) 22.5°	(d) 30°	
	19 Any vector in an ar	hitrary direction	can always he renlaced h	v two (or three)	
	19. Any vector in an arbitrary direction can always be replaced by two (or three) (a) Parallel vectors which have the original vector as their resultant				
(b) Mutually perpendicular vectors which have the original vector as their resultant					
(c) Arbitrary vectors which have the original vector as their resultant				lltant	
(d) It is not possible to resolve a vector					
	20. Angular momentur	n is			
	(a) A scalar		b) A polar vector		
	(c) An axial vector	(d) None of these		
21. Which of the following is a vector					
	(a) Pressure	_	b) Surface tension		
	(c) Moment of inertia	(d) None of these		
	22. If tilde $\overrightarrow{P} = \overrightarrow{Q}$ then which of the following is NOT correct				
	V ulcli	vviiicii oi tiit itiil	5 *** III 5 IS I TO I COLLECT		

(a) $\hat{P} = \hat{Q}$

(b) $|\overrightarrow{P}| = |\overrightarrow{Q}|$

(c)
$$P \hat{Q} = Q \hat{P}$$

(d)
$$\overrightarrow{P} + \overrightarrow{Q} = \widehat{P} + \widehat{Q}$$

- 23. The position vector of a particle is $\vec{r} = (a\cos\omega t)\hat{\imath} + (a\sin\omega t)\hat{\jmath}$. The velocity of the particle is
- (a) Parallel to the position vector
- (b) Perpendicular to the position vector
- (c) Directed towards the origin
- (d) Directed away from the origin
- 24. Which of the following is a scalar quantity
- (a) Displacement

(b) Electric field

(c) Acceleration

- (d) Work
- 25. If a unit vector is represented by 0.5 $\hat{i} + 0.8 \hat{j} + c \hat{k}$. then the value of 'c' is
- (a) 1
- (b) $\sqrt{0.11}$
- (c) $\sqrt{0.01}$
- (d) $\sqrt{0.39}$
- 26. A boy walks uniformally along the sides of a rectangular park of size $400 \text{ m} \times 300 \text{ mm}$ starting from one corner to the other corner diagonally opposite. Which of the following statement is incorrect
- (a) He has travelled a distance of 700 m
- (b) His displacement is 700 m
- (c) His displacement is 500 m
- (d) His velocity is not uniform throughout the walk
- 27. The unit vector parallel to the resultant of the vectors $\vec{A} = 4 \hat{\imath} + 3 \hat{\jmath} + 6 \hat{k}$ and $\vec{B} = -\hat{\imath} + 3 \hat{\jmath} 8 \hat{k}$ is

(a)
$$\frac{1}{7}$$
 (3 $\hat{i} + 6 \hat{j} - 2 \hat{k}$)

(b)
$$\frac{1}{7}$$
 (3 $\hat{i} + 6 \hat{j} + 2 \hat{k}$)

(c)
$$\frac{1}{49}$$
 (3 $\hat{i} + 6 \hat{j} - 2 \hat{k}$)

(d)
$$\frac{1}{49}$$
 (3 $\hat{i} - 6\hat{j} + 2\hat{k}$)

- 28. Surface area is
- (a) Scalar

- (b) Vector
- (c) Neither scalar nor vector
- (d) Both scalar and vector
- 29. With respect to a rectangular cartesian coordinate system, three vectors are expressed as $\vec{a} = 4\hat{\imath} \hat{\jmath}$, $\vec{b} = -3\hat{\imath} + 2\hat{\jmath}$ and $\vec{C} = -\hat{k}$; where $\hat{\imath}$, $\hat{\jmath}$, \hat{k} are unit vectors, along the X, Y and Zaxis respectively. The unit vectors \hat{r} along the direction of sum of these vector is

(a)
$$\hat{r} = \frac{1}{\sqrt{3}}(\hat{\imath} + \hat{\jmath} - \hat{k})$$

(b)
$$\hat{r} = \frac{1}{\sqrt{2}} (\hat{i} + \hat{j} - \hat{k})$$

(c)
$$\hat{r} = \frac{1}{3} \left(\hat{\imath} - \hat{\jmath} + \hat{k} \right)$$

(d)
$$\hat{r} = \frac{1}{\sqrt{2}} (\hat{i} + \hat{j} + \hat{k})$$

- 30. The angle between the two vectors $\overrightarrow{A} = 3 \hat{\imath} + 4 \hat{\jmath} + 5 \hat{k}$ and $\overrightarrow{B} = 3 \hat{\imath} + 4 \hat{\jmath} + 5 \hat{k}$ is
- (a) 60°
- (b) Zero
- (c) 90°
- (d) None of these
- 31. The position vector of a particle is determined by the expression
- $\vec{r} = 3t^2\hat{\imath} + 4t^2\hat{\jmath} + 7\hat{k}$; The distance traversed in first 10 sec is
- (a) 500 m
- (b) 300 m
- (c) 150 m
- (d) 100 m
- 32. Unit vector parallel to the resultant of vectors $\overrightarrow{A} = 4 \ \hat{\imath} 3 \ \hat{\jmath}$ and $\overrightarrow{B} = 8 \ \hat{\imath} + 8 \ \hat{\jmath}$ will be
- (a) $\frac{24 \hat{i} + 5 \hat{j}}{13}$
- (b) $\frac{12 \hat{i} + 5 \hat{j}}{13}$
- (c) $\frac{6\hat{i}+5\hat{j}}{13}$
- (d) None of these

33. The component of vector $A = 2 \hat{i} + 3 \hat{j}$ along the vector $\hat{i} + \hat{j}$

- (a) $\frac{5}{\sqrt{2}}$
- (b) $10\sqrt{2}$
- (c) $5\sqrt{2}$
- (d) 5

34. The angle between the two vectors $\overrightarrow{A} = 3 \hat{\imath} + 4 \hat{\jmath} + 5 \hat{k}$ and $\overrightarrow{B} = 3 \hat{\imath} + 4 \hat{\jmath} - 5 \hat{k}$ will be

- (a) 90°
- (b) 0°
- (c) 60°
- (d) 45°

Addition and Subtraction of Vectors

1. There are two force vectors, one of 5 N and other of 12 N at what angle the two vectors be added to get resultant vector of 17 N, 7 N and 13 N respectively

- (a) 0°, 180° and 90°
- (b) 0°, 90° and 180°

(c) 0°, 90° and 90°

(d) 180° , 0° and 90°

2. If $\overrightarrow{A} = 4\hat{\imath} - 3\hat{\jmath}$ and $\overrightarrow{B} = 6\hat{\imath} + 8\hat{\jmath}$ then magnitude and direction of $\overrightarrow{A} + \overrightarrow{B}$ will be

(a) 5, $tan^{-1}(3/4)$

(b) $5\sqrt{5}$, $\tan^{-1}(1/2)$

(c) 10, $tan^{-1}(5)$

(d) 25, $tan^{-1}(3/4)$

3 A truck travelling due north at 20 m/s turns west and travels at the same speed. The change in its velocity be

(a) 40 m/s N-W

(b) $20\sqrt{2} \text{ m/s N-W}$

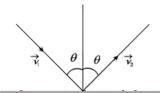
(c) 40 m/s S-W

(d) $20\sqrt{2}$ m/s S-W

4. If the sum of two umit vectors is a unit vector, then magnitude of difference is

- (a) $\sqrt{2}$
- (b) $\sqrt{3}$
- (c) $1/\sqrt{2}$
- (d) $\sqrt{5}$

 $5. \overrightarrow{A} = 2 \hat{\imath} + \hat{\jmath}, \overrightarrow{B} = 3 \hat{\jmath} - \hat{k} \text{ and } \overrightarrow{C} = 6 \hat{\imath} - 2 \hat{k}. \text{ Value of } \overrightarrow{A} - 2 \overrightarrow{B} + 3 \overrightarrow{C} \text{ would be}$


(a) $20 \hat{i} + 5 \hat{j} + 4 \hat{k}$

(b) $20 \hat{i} - 5 \hat{j} - 4 \hat{k}$

 $(c) 4 \hat{\imath} + 5 \hat{\jmath} + 20 \hat{k}$

(d) $5 \hat{i} + 4 \hat{j} + 10 \hat{k}$

6. An object of m kg with speed of v m/s strikes a wall at an angle θ and rebounds at the same speed and same angle. The magnitude of the change in momentum of the object will be

- (a) 2mv cos θ
- (b) $2mv \sin \theta$
- (c) 0
- (d) 2mv

7. Two forces, each of magnitude F, gives resulatant force of magnitudes F. The angle between th eforce is

- (a)45°
- (b) 120°
- (c) 150°
- (d) 60°

8. For the resultant of the two vectors to be maximum, what must be

- (a) 0°
- (b) 60°
- (c) 90°
- (d) 180°

9. A particle is simultaneously acted by two forces equal to 4 N and 3 N. The net force on the particle is

(a) 7 N	(b) 5 N	(c) 1 N		(d) Between 1 N and 7 N
 10. Two vectors A and these three vectors i.e. (a) Can be zero (c) Lies in the plane contains 	$e, \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$		(b) Cannot be	e this plane, then the resultant of zero plane containing \overrightarrow{C}
forces must be	nagnitude and direction icular to one another small magnitude		smaller than th	e magnitude of larger force, the two
12. Forces F_1 and F_2 or the point mass will be	=	nutually p	erpendicular d	lirections. The resultant force on
(a) $F_1 + F_2$	(b) $F_1 - F_2$	(c) $\sqrt{F_1^2}$	+ F ₂	(d) $F_1^2 + F_2^2$
13. $ \overrightarrow{A} - \overrightarrow{B} = \overrightarrow{A} =$	$ \overrightarrow{B} $. the angle betwee (b) $0^{\circ}\pi$	$\operatorname{en} \overrightarrow{A} \text{ and } \overrightarrow{A}$ (c) 120°		(d) 90°
14. Let the angle betw (a) \overrightarrow{C} must be equal to (c) \overrightarrow{C} must be greater			(b) \overrightarrow{C} must be	I resultant be \overrightarrow{C} less than $ \overrightarrow{A} - \overrightarrow{B} $ equal to $ \overrightarrow{A} - \overrightarrow{B} $
15. The magnitude of between \overrightarrow{A} and \overrightarrow{B} is (a) 0	vector \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} respond to π	pectively (c) $\pi/2$		nits and $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$ then the angle (d) $\pi/4$
16. Magnitude of vector (a) $\sqrt{136}$	or which comes on add (b) $\sqrt{13.2}$	ition of tw (c) $\sqrt{20}$		+ 7 \hat{j} and 3 \hat{i} + 4 \hat{j} (d) $\sqrt{160}$
17. A particle has disp upward. The sum of th (a) 12		rds east a		ds north then 6 m vertically (d) None of these
	•	$(2-3\hat{j}+5)$	\hat{k} and $\overrightarrow{C}=2\hat{\imath}$ celes triangle	
19. For the figure (2) $\overrightarrow{A} + \overrightarrow{B} - \overrightarrow{C}$	$(b)\overrightarrow{R} + \overrightarrow{C} - \overrightarrow{A}$		$(c)\overrightarrow{C} + \overrightarrow{A} = \overline{1}$	\overrightarrow{P} $(d)\overrightarrow{A} \perp \overrightarrow{P} \perp \overrightarrow{C} = 0$

8340353648

20. Let $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$ then

- (a) $|\overrightarrow{C}|$ is always greater then $|\overrightarrow{A}|$
- (b) It is possible to have $|\overrightarrow{C}| < |\overrightarrow{A}|$ | and $|\overrightarrow{C}| < |\overrightarrow{B}|$
- (c) C is always equal to A + B
- (d) C is never equal to A + B
- 21. The value of the sum of two vectors \overrightarrow{A} and \overrightarrow{B} with θ as the angle between them is
- (a) $\sqrt{A^2 + B^2 + 2AB\cos\theta}$

(b) $\sqrt{A^2 - B^2 + 2AB\cos\theta}$

(c) $\sqrt{A^2 + B^2 - 2AB \sin \theta}$

- (d) $\sqrt{A^2 + B^2 + 2AB \sin \theta}$
- 22. Following sets of three forces act on a body. Whose resultant commet be nere
- (a) 10, 10, 10
- (b) 10, 10, 20
- (c) 10, 20, 23
- (d) 10, 20, 40
- 23. When these forces of 50 N, 30 N, 15 N act on a body, then the body in
- (a) A vest

(b) Moving with a uniform velocity

(c) In equilibrium

- (d) Moving with an acceleration
- 24 The sum of two forces acting at a poire is 16 N. if the resultant force is 8N and its direction is perpendicular to mintnuum force then she forces are
- (a) 6 N and 10 N
- (b) 8 N and 8 N
- (c) 4 N and 12 N
- (d) 2 N and 14 N
- 25. If vectors P, Q and R have magnitude 5, 12 and 13 $\overrightarrow{P} + \overrightarrow{Q} = \overrightarrow{R}$ the angle between Q and R is
- (a) $\cos^{-1}\frac{5}{12}$

- (b) $\cos^{-1}\frac{5}{13}$ (c) $\cos^{-1}\frac{12}{13}$ (d) $\cos^{-1}\frac{7}{13}$
- 26. The resultant of two vectors A and B is perpendicular to the vector A and its magestude is equal to half the magratade of vector B. The angle between A and B is
- (a) 120°
- (b)150°
- (c) 135°
- (d) None of these
- 27. What vector must be added to the two vectors $\hat{i} 2\hat{j} + 2\hat{k}$ and $2\hat{i} + \hat{j} \hat{k}$, so that the resultant may be a unit vector along x-axis.
- (a) $2 \hat{i} + \hat{j} \hat{k}$
- (b) $-2\hat{\imath} + \hat{\jmath} \hat{k}$
- (c) $2\hat{i} \hat{j} + \hat{k}$ (d) $-2\hat{i} \hat{j} \hat{k}$
- 28. What is the angle between \overrightarrow{P} and the remstunt of $(\overrightarrow{P} + \overrightarrow{Q})$ and $(\overrightarrow{P} \overrightarrow{Q})$
- (a) Zero
- (b) $tan^{-1} (P / Q)$
- (c) $tan^{-1}(Q/P)$ (d) $tan^{-1}(P-Q)/(P+Q)$.
- 29. The resultant of \overrightarrow{P} and \overrightarrow{Q} perpendicular to \overrightarrow{P} . What is the angle between \overrightarrow{P} and \overrightarrow{Q}
- (a) $\cos^{-1}(P/Q)$
- (b) $\cos^{-1}(-P/Q)$
- (c) $\sin^{-1}(P/Q)$
- (d) $\sin^{-1}(-P/Q)$
- 30. Mamum and minimum magnitudes of the resultam af two vecurs of magnitudes P and Q are in the ratie 3:1. Which of the Folkwing relatione is true
- (a) P = 20
- (b) P = 0

- (c) PQ = 1
- (d) None of these
- 31. The resultant of two vectors \overrightarrow{P} and \overrightarrow{Q} is \overrightarrow{R} . If Q is doubled, the new resultant is perpendicular to P. Then R equals

	(a) P	(b) $(P + Q)$	(c) Q	(d) (P-Q)	
		32. Two forces. F_1 and F_2 are acting on a body. One force is looble that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is			
	-	•	(c) $\cos^{-1}(-1/4)$		
	33. Given that $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B}$.	$= \overrightarrow{C}$ that \overrightarrow{C} is \perp to \overrightarrow{A} . Fu	urther if $ \overrightarrow{A} = \overrightarrow{C} $, the	n what is the angle between \overrightarrow{A} and	
	(a) $\pi/4$ radian	(b) $\pi/2$ radian	(c) $3\pi/4$ radian	(d) π radian	
	21 A hody is at rost up	ador the action of three	forces two of which ar	The $\vec{F}_1 = 4 \hat{\imath}$, $\vec{F}_2 = 6 \hat{\jmath}$; the third force is	
			(c) $-4\hat{i}+6\hat{j}$		
	(a) + i 0 j	(b) + t = 0 j	(c) - + i + 0	(u) $-\pi i$ 0	
		g around the earth with hange in the velocity as		at a constant height from the	
	(a) 200 km/hr	(b) 150 km/hr	_	(d) 0	
			displacement 25 $\hat{i} - 6$	îm to give a displacemere of 7.0 m	
	pointing in the x-direc	tion	(c) $-18\hat{i} + 6\hat{j}$	(4) 25 2 12 2	
	(a) 18 l - 6 j	(b) $32 l - 13 j$	(c) -18 i + 6 j	(a) = 25 t + 13 j	
	37. A body moves due resultant velocity	East with velocity 20 k	m/hr and then due Noi	th with velocity 15 km/hr. The	
	(a)5 km/hr	(b) 15km/hr	(c) 20 km/hr	(d) 25 km/hr	
38. The magnitudes of vectors \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} are 3, 4 and 5 unitd respectively. if $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$, the angle					
	between \overrightarrow{A} and \overrightarrow{B} is			, ,	
	(a) $\pi/2$	(b) $\cos^{-1}(0.6)$	(c) $\tan^{-1}(7/5)$	(d) $\pi/4$	
	-			North, 60 km North-east and 20	
		n distance between the			
	(a) 72 Am	(b) 112 km	(c) 132 km	(d) 155 km	
40. A scooter going due east at 10 ms turns right through an angle of 90°. If the speed of the scooter					
			e is the velocity of the s		
	(a) 20.0 ms south eas		(b) Zero		
	(c) 10.0 ms in souther	n direction.	(d) 14.14 ms in south	-west direction	
			-	ement from initial point	
	(a) 22.36 km	(b) 2 km	(c) 5 km	(d) 20 km	
	42 Two forces $\vec{E} = \vec{\Gamma}$	↑ 10↑ 20€~~4₽	- 10 î î î 15 î a-t-	on a single point. The angle between	
			– 10 <i>i</i> – 5 <i>j</i> – 15 <i>k</i> act (on a single point. The angle between	
	tilde \vec{F}_1 and \vec{F}_2 is nearl		(a) 60°	(4) 000	
	(a) 30°	(b) 45°	(c) 60°	(d) 90°	

8340353648

43. Which pair of the following forces will never give resultave force of 2 $\ensuremath{\text{N}}$

(a) 2 Nand 2 N	(b) 1 N and 1 N	(c) 1 N and 3 N	(d) 1 N and 4 N
	l 2 N are at an angle θ s It become 2R. The value		s R. The first force is now increased
(a) 30°	(b) 60°	(c) 90°	(d) 120°
	triangle formed by the angle riangle sosceles triangle	=	m, What is the angle between the
$46. \overrightarrow{A} + \overrightarrow{B} = \overrightarrow{A} + $ (a) 90°	$ \overrightarrow{B} $ then angle betwee (b) 120°	$n \overrightarrow{A}$ and \overrightarrow{B} will be . (c) 0°	(d) 60°
			iven vectors are 17 units and 7 unit te magnitude of their resultant in (d) 13
48. The vector sum of two forces is perpendicular to their vector differences. In that case, the forces(a) Are equal to each other in magnitude(b) Are not equal to each other in magnitude(c) Cannot be predicted(d) Are equal to each other			
49. y component of ve with the horizontal at	-	onent of velocity is 10.	The direction of motion of the body
(a) $tan^{-1}(2)$	(b) $tan^{-1}(1/2)$	(c) 45°	(d) 0°
50. Two forces of 12 N (a) 4 N	and 8 N act upon a boo (b) 0 N	dy. The resultant force (c) 20 N	on the body has maximum value of (d) 8 N
51. Twe equal forces (their resultant is	P each) act at a point in	aclined to each other at	an angle of 120°. The magnitude of
(a) P/2	(b) P/4	(c) P	(d) 2P
52. The vectors $5i + 8j$ (a) $\sqrt{274}$	j and 2j + 7j added. The (b) 38	e magnitude of the sum (c) 238	of these vector is (d) 560
	d \overrightarrow{B} are such that $\overrightarrow{A} + \overrightarrow{B}$ (b) $\overrightarrow{A} \times \overrightarrow{B} = 0$		$(d) \overrightarrow{B} = 0$

Multiplication of Vectors

1. If a vector 2 $\hat{\imath}$ + 3 $\hat{\jmath}$ + 8 \hat{k} in perpendicular to the vector 4 $\hat{\jmath}$ – 4 $\hat{\imath}$ + α \hat{k} . Then the value of α is

(a) -1

(b) 1/2

(c) -1/2

(d) 1

2. If two vectors $2 \hat{i} + (a) 0$	$3 \hat{j} - \hat{k} \text{ and } -4 \hat{i} - 6 \hat{j} - (b) 2$	$-\lambda \hat{k}$ are parallel to each (c) 3	h other then value of λ be (d) 4		
= =	by a force of 50 N is dis ne force. The work done	-	nce 10 meter in a direction making		
(a) 200 J	(b) 100 J	(c) 300 J	(d) 250 J		
	om position $3 \hat{i} + 2 \hat{j} - \epsilon$ nt in meters then work		due to a uniform force of $(4 \hat{i} + \hat{j} + 3)$		
(a) 100 J	(b) 200 J	(c) 300 J	(d) 250 J		
5. if for two vector \overrightarrow{A} at their magnitude is	and \overrightarrow{B} , sum $(\overrightarrow{A} + \overrightarrow{B})$ is	perpendicular to the d	ifference $(\overrightarrow{A} - \overrightarrow{B})$. The ratio of		
(a) 1	(b) 2	(c) 3	(d) None of these		
6. The angle between to (a) A ² B	the vectors \overrightarrow{A} and \overrightarrow{B} is (b) Zero	θ . The value of the tripl (c) A^2 B sin θ	e product \overrightarrow{A} . $(\overrightarrow{B} \times \overrightarrow{A})$ is (d) $A^2 B \cos \theta$		
	nen the angle between A				
(a) π / 2	(b) $\pi/3$	(c) π	(d) $\pi/4$		
8. If $\overrightarrow{A} = 3 \hat{\imath} + \hat{\jmath} + 2 \hat{k}$. (a) $8\sqrt{2}$	and $\overrightarrow{B} = 2 \hat{\imath} - 2 \hat{\jmath} + 4 \hat{k}$ (b) $8 \sqrt{3}$	then value of $ \overrightarrow{A} \times \overrightarrow{B} $ (c) $8\sqrt{5}$	will be (d) $5\sqrt{8}$		
9. The torque of the force $\vec{F} = (2 \hat{\imath} - 3 \hat{\jmath} + 4 \hat{k}) N$ acting at the point $\vec{r} = (3 \hat{\imath} + 2 \hat{\jmath} + 3 \hat{k}) m$; about the origin be					
(a) $6 \hat{i} - 6 \hat{j} + 12 \hat{k}$ (c) $- 6 \hat{i} + 6 \hat{j} - 12 \hat{k}$		$\hat{i} - 6\hat{j} - 13\hat{k}$ 17 $\hat{i} + 6\hat{j} + 13\hat{k}$			
	n which of the following	=			
(a) $\overrightarrow{C} \perp \overrightarrow{A}$ (c) $\overrightarrow{C} \perp (\overrightarrow{A} + \overrightarrow{B})$	(b) \overrightarrow{C} (d) \overrightarrow{C}	$\bot B \\ \bot (\overrightarrow{A} \times \overrightarrow{B})$			
11. If a particle of mans m is moving with constant velocity v parallel to x-axis in x-y plane as shown in fig. Its angular momentum with respect to origin at any time & will be					
(a) mvb \hat{k}	(b) $-\text{mvb } \hat{k}$	(c) mvb \hat{i}	(d) mv î		
12. Consider two vectors $\vec{F}_1 = 2 \hat{\imath} + 5 \hat{k}$ and $\vec{F}_2 = 3 \hat{\jmath} + 4 \hat{k}$. The magnitude of the scalar product of these vectors is					
(a) 20	(b) 23	(c) 5√33	(d) 26		
13. Consider a vector <i>I</i>	13. Consider a vector $\overrightarrow{F} = 4\hat{\imath} - 3\hat{\jmath}$. Another vector that is perpendicular to \overrightarrow{F} is				

(a) $4 \hat{i} + 3 \hat{j}$ (b) $6 \hat{i}$ (c) $7 \hat{k}$ (d) $3 \hat{i} - 4 \hat{j}$

14. Two vectors \overrightarrow{A} and \overrightarrow{B} are at right angles to each other, when (a) $\overrightarrow{A} + \overrightarrow{B} = 0$ (b) $\overrightarrow{A} - \overrightarrow{B} = 0$ (c) $\overrightarrow{A} \times \overrightarrow{B} = 0$ (d) $\overrightarrow{A} \cdot \overrightarrow{B} = 0$						
15. $ \vec{V}_1 + \vec{V}_2 = \vec{V}_1 - \vec{V}_2 $ (a) V_1 is parallel to V_2 (c) V_1 and V_2 are mutu		(b) $\vec{V}_1 = \vec{V}_2$ (d) $ \vec{V}_1 = \vec{V}_2 $				
	$3\hat{j}$) Newton is applied netres. The work done (b) + 13 J		isplaces it from its origin to the $(d) + 11 J$			
17. The angle between (a) 0°	two vectors $-2\hat{\imath} + 3\hat{\jmath}$ (b) 90°	+ \hat{k} and \hat{i} + 2 \hat{j} - 4 \hat{k} is (c) 180°	(d) None of the above			
18. The angle between (a) 30°	the vectors $(\hat{i} + \hat{j})$ and (b) 45°	$\frac{\mathrm{d}(\hat{\jmath} + \hat{k}) \text{ is}}{(c) 60^{\circ}}$	(d) 90°			
	vith a velocity $6\hat{\imath} - 4\hat{\jmath} + 1$ ntaneous power applie (b) 45 J/s		nence of a constant force $\overrightarrow{F} = 20 \hat{\imath} +$ (d) 195 J/s			
20. If $\overrightarrow{P} \cdot \overrightarrow{Q} = PQ$, the (a) 0°	n angle between \overrightarrow{P} and (b) 30°	\overrightarrow{Q} is (c) 45°	(d) 60°			
the force is	$6\hat{j} + 4\hat{k}$ acting on a boots (b) 18 units		ment $\overrightarrow{S} = 6 \ \hat{\imath} - 5 \ \hat{k}$. Work done by (d) 5 units			
	the two vectors $\overrightarrow{A} = 5$ (b) 45°					
a is			r to each other. The positive value of			
	(b) 4 ed to move in the y-dire one by this force in mov (b) 150J		(d) 13 The control of the control			
25. A particle moves in the x-y plane under the action of a force \overrightarrow{F} such that the value of its linear momentum (\overrightarrow{P}) at anytime t is $P_x = 2 \cos t$, $P_y = 2 \sin t$. The angle θ between \overrightarrow{F} and \overrightarrow{P} at a given time t will be						

(a) $\theta = 0^{\circ}$	(b) $\theta = 30^{\circ}$	(c) $\theta = 90^{\circ}$	(d) $\theta = 1.8^{\circ}$		
26, The area of the par (a) 14 units	rallelogram represente (b) 7.5 units	d by the vectors $\overrightarrow{A} = 2$ (c) 10 units	$(\hat{i} + 3\hat{j})$ and $\overrightarrow{B} = (\hat{i} + 4\hat{j})$ is (d) 5 units		
27. A vector \overrightarrow{F} along to could be	he positive x-axis. If its	vector product with an	other vector $ec{F}_1$ is zero then $ec{F}_2$		
(a) $4\hat{j}$	$(b) - (\hat{\imath} + \hat{\jmath})$	(c) $(\hat{j} + \hat{k})$	(d) (-4î)		
28. If for two vectors A (a) Are perpendicular (b) Are parallel to eac (c) Act at an angle of 6 (d) Act at an angle of 3	h other 50°	ne vectors			
29. The angle between	n vectors $(\overrightarrow{A} \times \overrightarrow{B})$ and				
(a) Zero	(b) π	(c) π / 4	(d) $\pi/2$		
30. What is the angle b	between $(\overrightarrow{P} + \overrightarrow{Q})$ and (b) $\pi/2$	$(\overrightarrow{P} \times \overrightarrow{Q})$ (c) $\pi/4$	(d) π		
31. The resultant of th	e two vectors having m (b) 3	nagnitude 2 and 3 is I. W	hat is their cross product (d) 0		
32. Let $\overrightarrow{A} = \hat{\imath}A\cos\theta + \hat{\jmath}A\sin\theta$ be any vector, Another vector vec \overrightarrow{B} which is normal te A is (a) $\hat{\imath} B\cos\theta + \hat{\jmath} B\sin\theta$ (b) $\hat{\imath} B\sin\theta + \hat{\jmath} B\cos\theta$ (c) $\hat{\imath} B\sin\theta - \hat{\jmath} B\cos\theta$ (d) $\hat{\imath} B\cos\theta - \hat{\jmath} B\sin\theta$					
33. The angle between (a) $\cos^{-1}(1/\sqrt{3})$ (c) $\sin^{-1}(2/\sqrt{3})$	two vectors given $6\hat{\imath}$ -1 (b) $\cos^{-1}(5/v)$ (d) $\sin^{-1}(\sqrt{5}/v)$		$4\hat{k}$ is		
34. A vector \overrightarrow{A} points (a) Zero	vertically upward and a	B points towards north. (c) Along east	The vector product $\overrightarrow{A} \times \overrightarrow{B}$ is (d) Vertically downward		
35. Angle between the (a) 90 °	e vectors $(\hat{i} + \hat{j})$ and $(\hat{i} - \hat{j})$	ĵ) is (c) 180°	(d) 60°		
	rs of points A, B, C and hen the displacement v (b) Pa	vectors ABand CD are	$(\widehat{k}, \overrightarrow{B}) = 4 \widehat{\imath} + 5 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 6 \widehat{k} \cdot \overrightarrow{C} = 7 \widehat{\imath} + 9 \widehat{\jmath} + 9 $		

(d) 4×6

8340353648

(c) Antiparallel

(a) 4×3

(c) 6×3

(d) Inclined at an angle of 60°

37. If force $(\overrightarrow{F}) = 4 \hat{\imath} + 5 \hat{\jmath}$ and displacement $(\overrightarrow{S}) = 3 \hat{\imath} + 6 \hat{k}$ then the work done is

(b) 5×6

38. If $|\overrightarrow{A} \times \overrightarrow{B}| = |\overrightarrow{A}.\overrightarrow{B}|$ then angle between \overrightarrow{A} and \overrightarrow{B} will be

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°

39 In an clockwise system

- (a) $\hat{j} \times \hat{k} = \hat{i}$
- (b) $\hat{i} \cdot \hat{i} = 0$
- (c) $\hat{j} \times \hat{j} = 1$
- (d) $\hat{k} \cdot \hat{j} = 1$

40. The linear velocity of a rotating body is given by $\vec{v} = \vec{\omega} \times \vec{r}$, where $\vec{\omega}$ is the angular velocity and \vec{r} is the radius vector. The angular velocity of a body is $\vec{\omega} = \hat{\imath} - 2\hat{\jmath} + 2\hat{k}$ and the radiun vector $\vec{r} = 4\hat{\jmath}$ $3\hat{k}$, then $|\vec{v}|$ is

- (a) $\sqrt{29}$ units
- (b) $\sqrt{31}$ units
- (c) $\sqrt{37}$ units
- (d) $\sqrt{41}$ unite

41. Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the relation \vec{a} . $\vec{b} = 0$ and \vec{a} . $\vec{c} = 0$ The vector \vec{a} is parallel to

- (a) \vec{b}
- (b) \vec{c}
- (c) $\vec{b} \cdot \vec{c}$
- (d) $\vec{b} \times \vec{c}$

42. The diagonals of a parallelogram are 2 \hat{i} r/4 and 2 \hat{j} . What is the area of the parallelogram

- (a) 0.5 units
- (b) 1 unit
- (c) 2 units
- (d) 4 units

43. What is the unit vector perpendicular to the following vectors $2 \hat{i} + 2 \hat{j} - \hat{k}$ and $6 \hat{i} - 3 \hat{j} + 2 \hat{k}$

- (a) $\frac{\hat{i} + 10\hat{j} 18\hat{k}}{5\sqrt{17}}$
- (b) $\frac{\hat{i} 10\hat{j} + 18\hat{k}}{5\sqrt{17}}$
- (c) $\frac{\hat{i}-10\hat{j}-18\hat{k}}{5\sqrt{17}}$
- (d) $\frac{\hat{i} + 10\hat{j} + 18\hat{k}}{5\sqrt{17}}$

44. The area of the parallelogram whose sides are represented by the vectors $\hat{i} + 3\hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$

- (a) $\sqrt{61}$ sq.unit
- (b) $\sqrt{59}$ sq.unit
- (c) $\sqrt{49}$ sq.unit
- (d) $\sqrt{52}$ sq.unit

45. The position of a particle is given by $\vec{r} = (\hat{\imath} + 2\hat{\jmath} - \hat{k})$ momentum $\vec{P} = (3\hat{\imath} + 4\hat{\jmath} - 2\hat{k})$ The angular momentum is perpendicular to

(a) x-axis

(b) y-axis

(c) z-axis

(d) Line at equal angles to all the three axes

46. Two vector A and have equal magnitudes. Then the vector A + B is perpendicular to

- (a) $A \times B$
- (b) A B
- (c) 3A 3B
- (d) All of these

47. Find the torque of a force $\vec{F} = -3 \hat{\imath} + \hat{\jmath} + 5 \hat{k}$ acting at the point $\vec{r} = 7 \hat{\imath} + 3 \hat{\jmath} + \hat{k}$.

- (a) $14 \hat{i} 38 \hat{j} + 16 \hat{k}$
- (b) $4 \hat{i} + 4 \hat{j} + 6 \hat{k}$.
- (c) $21 \hat{i} + 4 \hat{j} + 4 \hat{k}$
- (d) $-14 \hat{i} + 34 \hat{j} 16 \hat{k}$

48. The value of $(\overrightarrow{A} + \overrightarrow{B}) \times (\overrightarrow{A} - \overrightarrow{B})$

- (a) 0
- (b) $A^2 B^2$
- (c) $\overrightarrow{B} \times \overrightarrow{A}$ (d) 2 ($\overrightarrow{B} \times \overrightarrow{A}$)

49. If \overrightarrow{A} and \overrightarrow{B} are perpendicular vectors and vector $\overrightarrow{A} = 5\hat{\imath} + 7\hat{\jmath} - 3\hat{k}$. and $\overrightarrow{B} = 2\hat{\imath} + 2\hat{\jmath} - \alpha\hat{k}$. The value of a is

- (a) -2
- (b) 8
- (c) -7
- (d) 8

50. A force vector applied on a mass is represented as $\overrightarrow{F} = 6\hat{\imath} - 8\hat{\jmath} + 10\hat{k}$ and accelerates with 1m/s². What will be the mass of the body in kg.

- (a) $10\sqrt{2}$
- (b) 20
- (c) $2\sqrt{10}$
- (d) 10

51. Two adjacent sides of a parallelogram are represented by the two vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{j} - 2\hat{j} + \hat{k}$. What is the area of parallelogram

- (a) 8
- (b) $8\sqrt{3}$
- (c) $3\sqrt{8}$
- (d) 192

52 The position vectors of radiun are $2 \hat{i} + \hat{j} + \hat{k}$ and $2 \hat{i} - 3\hat{j} + \hat{k}$ while those of linear momentum are $2 \hat{i} + 3 \hat{j} - \hat{k}$. Then the angular momenten is

- (a) $2 \hat{i} 4\hat{k}$
- (b) $4\hat{i} 8\hat{k}$
- (c) $2\hat{i} 4\hat{j} + 2\hat{k}$
- (d) $4 \hat{i} 8\hat{k}$

53. What is the value of linear velocity, if $\vec{\omega} = 3\hat{\imath} - 4\hat{\jmath} + \hat{k}$ and $\vec{r} = 5\hat{\imath} - 6\hat{\jmath} + 6\hat{k}$

- (a) $6 \hat{i} 2\hat{j} + 3\hat{k}$
- (b) $6\hat{i} 2\hat{j} + 8\hat{k}$
- (c) $4\hat{i} 13\hat{j} + 6\hat{k}$
- (d) $-18\hat{i} 13\hat{j} + 2\hat{k}$

54. Dot product of two mutual perpendicular vector is

- (a) 0
- (b) 1
- (c) ∞
- (d) None of these

55. When $\overrightarrow{A} \cdot \overrightarrow{B} = -|A||B|$. then

- (a) \overrightarrow{A} and \overrightarrow{B} are perpendicular to each other
- (b) \overrightarrow{A} and \overrightarrow{B} act in the same direction
- (c) \overrightarrow{A} and \overrightarrow{B} act in the opposite direction
- (d) \overrightarrow{A} and \overrightarrow{B} can act in any direction

56. If $|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{3} \overrightarrow{A} \cdot \overrightarrow{B}$, then the value of $|\overrightarrow{A} + \overrightarrow{B}|$ is

(a) $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$

(b) A + B

(c) $(A^2 + B^2 + \sqrt{3} AB)^{1/2}$

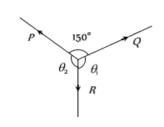
(d) $(A^2 + B^2 + AB)^{1/2}$

57. A force $\overrightarrow{F} = 3 \hat{\imath} + c \hat{\jmath} + 2 \hat{k}$. acting on a particle causes a displacement $\overrightarrow{S} = -4 \hat{\imath} + 2 \hat{\jmath} - 3 \hat{k}$ in its own direction. If the work done is 6J, then bthe value of c will be

- (a) 12
- (b) 6
- (c) 1
- (d) 0

58. A force $\vec{F} = (5\hat{\imath} + 3\hat{\jmath})$ N is applied over a particle which displaces it from its original position to the point $\vec{s} = (2\hat{\imath} - 1\hat{\jmath})$ m. The work dane on the particle is

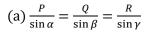
- (a) + 11 J
- (b) + 7J
- (d) + 13 J
- (d) 7J


59. If a vector \overrightarrow{A} is parallel to another vector \overrightarrow{B} then the resultant of the vector $\overrightarrow{A} \times \overrightarrow{B}$ will be equal to

- (a) A
- (b) \overrightarrow{A}
- (c) Zero vector
- (d) Zero

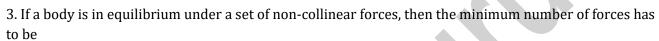
Lami's Theorem

1. P, Q and R are three coplanar forces acting at a point and are in equilibrium. Given P = 1.9318 kg wt, sin θ_1 = 0.9659, the value of R is (in kg wt)


(a) 0.9659

8340353648

- (b) 2
- (c) 1
- (d) 1/2


2. A body is in equilibrium under the action of three coplanar forces P, Q and R as shown in the figure. Select the correct statement

(b)
$$\frac{P}{\cos \alpha} = \frac{Q}{\cos \beta} = \frac{R}{\cos \gamma}$$

(c)
$$\frac{P}{\tan \alpha} = \frac{Q}{\tan \beta} = \frac{R}{\tan \gamma}$$

(d)
$$\frac{P}{\sin \beta} = \frac{Q}{\sin \gamma} = \frac{R}{\sin \alpha}$$

- (a) Four
- (b) Three
- (c) Two
- (d) Five

4. How many minimum number of non-zero vectors in different planes can be added to give zero resultant

- (a) 2
- (b) 3
- (c) 4
- (d) 5

5. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newton are

- (a) $30\sqrt{3}$, 30
- (b) $30\sqrt{3}$, 60
- (c) $60\sqrt{3}$, 30
- (d) None of these

Relative Velocity

1. Two cars are moving in the same direction with the same speed $30 \, \text{km/hr}$. They are separated by a distance of $5 \, \text{km}$, the speed of a car moving in the opposite direction if it meets these two cars at an interval of $4 \, \text{minutes}$, will be

- (a) 40 km/hr
- (b) 45 km/hr
- (c) 30 km/hr
- (d) 15 km

2 A man standing on a road hold his umbrella at 30° with the vertical to keep the rain away, He throws the umbrella and starts running at 10 km/hr. He finds that raindrops are hitting his head vertically, the speed of raindreps with respect to the raad will be

- (a) 10 km/hr
- (b) 20 km/hr
- (c) 30 km/hr
- (d) 40 km/h

3 In the above problem, the speed of raindrops w.r.t the moving man, will be

- (a) $10 / \sqrt{2} \text{ km / h}$
- (b) 5 km/h
- (c) $10\sqrt{3} \text{ km / h}$
- (d) $5/\sqrt{3} \text{ km / h}$

4. A beat is moving with a velocity $3\hat{\imath} + 4\hat{\jmath}$ with respect to ground. The water in the river is moving with a velocity - $3\hat{\imath}$ - $4\hat{\jmath}$ respect to ground. The relative velocity of the boat with to water is

(a) 8 J

(b) - 6i - 8J (c) 6i + 8j (d) $5\sqrt{2}$

5. A 150 m long train is moving to north at a speed of 10 m/s. A parrot flying towards south with a speed of 5 m/s crosses the train. The time taken by the parrut the cross to train would be

(a) $30 \, s$

(b) 13 s

(c) 8 s

(d) 10 s

6. A river is flowing from east to west at a speed of 5 m/min. A man on south bank of river, capable of swinning 10m/min in still water, wants to swim across the river in shortest time. He should swim.

(a) Due north

(b) Due northeast

(c) Due north-east with double the speed of river

(d) None of these

7. A person aiming to reach the exactly apposite point on the bank of a stream is swimming with a speed of 0.5 m/s at an angle of 120. with the direction of flow of water. The speed of water in the stream is

(a) 1 m/s

(b) 0.5 m/s

(c) 0.25 m/s

(d) 0.433 m/s

8. A moves with 65 km/hr while B is coming back of A with 80 km/h. The relative velocity of B with respect to A is

(a) 80 km/hr

(b) 60 km/h

(c) 15 km/h

(d) 145 km/h

9. A thief is running away on a straight road on a jeep moving with a speed of 9 m/s. A police man chases him on a motor cycle moving at a speed of 10 m/s. If the instantaneous separation of jeep from the motor cycle is 100 m, how long will it take for the policemen to catch the thief

(a) second

(b) 19 second

(c) 90 second

(d) 100 second

10. A mam can swim with velocity v relative to water. He has to cross a river of width d flowing with a velocity u (u> v). The distance through which he is carried down stream by is x. Which of the following statement is correct

(a) If he crosses the river in minimum time $x = \frac{du}{dt}$

(b) x can not be less than $\frac{du}{v}$

(c) For x to be minimum he has to swim in a direction making an angle of $\frac{\pi}{2} + \sin^{-1}\left(\frac{v}{u}\right)$ with the direction of the flow of water.

(d) x will be max, if he swim in a direction making angle of $\frac{\pi}{2} + \sin^{-1}\left(\frac{v}{u}\right)$ with direction of the flew of water.

11. A mun sating in a bus travelling in a direction from west to east with a speed of 40 km/h observes that the ram-drups are falling vertically down. To the another man standing in ground the ram will appear

(a) To fall vertically down

(b) To fall at an angle going from west to cost

(c) To fall at arm east to west

(d) The information given is insuficient to decide the direction of rain

12. A boat takes two hours to travel 8 km and back in still water. If the velocity of water is 4 km/h the time taken fer going upstream 8 km and coming back is

(a) 2h

- (b) 2h 40 min
- (c) 1h 20 min
- (d) Cannet he estimated with the information given

 $13.\,A\,120$ m long rain is moving towards west with a speed of 10 m/s. A bind flying towards east with a speed of 5 m/s crosses the train. The time taken by the bird to cross the train will be

- (a) 16 sec
- (b) 12 sec
- (c) 10 sec
- (d) 8 sec

 $14~\mathrm{A}$ boat crosses a river with a velocity of 8 km/h. if the resulting velocity of boat is $10~\mathrm{km/h}$ then the velocity of river water is

- (a) 4 km/h
- (b) 6 km/h
- (c) 8 km/h
- (d) 10 km/h

Critical Thinking: Objective Questions

1. If a \overrightarrow{P} vector making angles α , β and γ respectively with the X, Y and Z axis respectively.

Then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$

- (a) 0
- (b) 1
- (c) 2
- (d) 3

2. If the resultant of n forces of different magnitudes acting at a point is zero, then the momen value of n is

- (a) 1
- (b) 2
- (c) 3
- (d) 4

3. Can the resultave of 2 vectors be zero

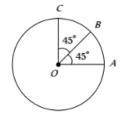
- (a) Yes, when the 2 vectors are same in magnitude and direction
- (b) No.
- (c) Yes, when the 2 vectors are same in magnitude but opposite in sense.

(d) Yes, when the 2 vectors are same in magnitude making an angle of $\frac{2\pi}{3}$ with each other

 $4. \ The \ man \ of \ the \ magnitudes \ of \ two \ forces \ acting \ at \ point \ is \ 18 \ and \ the \ magnitude \ of \ their \ resultant \ is$

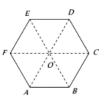
12. If the resultant in 90° with the force of smaller magnitude, what are the, magnitudes of forces

- (a) 12, 5
- (b) 14, 4
- (c) 5, 13
- (d) 10,8


5. A vecter \vec{a} is turned without a change in its length through a small angle d0.

The value of $|\Delta \vec{a}|$ and Δa are respectively

- (a) 0, a $d\theta$
- (b) a $d\theta$, 0
- (c) 0, 0
- (d) None of these


6 Find the remitant of three vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} shown in the following figure, Radios of the circle is R.

- (a) 2R
- (b) $R(1 + \sqrt{2})$
- (c) $R\sqrt{2}$
- (d) R ($\sqrt{2}$ –1)

7. Figure shows ABCDEF as a regular hesagon. What is the value of $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$

- (b) \overline{AO}
- (b) $2\overrightarrow{AO}$
- (c) $4 \overrightarrow{AO}$
- (d) $6\overrightarrow{A0}$

8. The length of second's hand in watch is 1 cm. The change in velocity of its tip in 15 seconds is

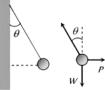
- (a) Zero
- (b) $\frac{\pi}{30\sqrt{2}}$ cm/sec
- (c) $\frac{\pi}{30}$ cm/sec (d) $\frac{\pi\sqrt{2}}{30}$ cm/sec

9. A particle rooves towards esat wali velocity 5 m/s. After 10 seconds its direction changes towards north with same velocity. The average acceleration of the particle is

- (a) Zero
- (b) $\frac{1}{\sqrt{2}} m/s^2$ N-W
- (c) $\frac{1}{\sqrt{2}}m/s^2$ N-E (d) $\frac{1}{\sqrt{2}}m/s^2$ S-W

10. A force $\vec{F} = -K(y \hat{\imath} + x \hat{\jmath})$ (where Kis a positive constant) acts on a particle moving in the x-y plane. Starting from the origin, the particle is taken along the positive x-axis to the point (a, 0) and then parallel to the y-axis to the point (a, a). The total work done by the forces \vec{F} the particle is

- (a) $2Ka^2$
- (b) 2Ka²


- (c) Ka^2

11. The vectors from origin to the points A and B are $\overrightarrow{A} = 3 \hat{\imath} - 6 \hat{\jmath} + 2 \hat{k}$ and $\overrightarrow{B} = 2 \hat{\imath} + \hat{\jmath} - 2 \hat{k}$ respectively. The area of the triangle 048 be

- (a) $\frac{5}{2}\sqrt{17}$ sq.unit
- (b) $\frac{2}{5}\sqrt{17}$ sq.unit
- (c) $\frac{3}{5}\sqrt{17}$ sq.unit
- $(d)\frac{5}{3}\sqrt{17}$ sq.unit

12. A metal sphere is hung by a string foxed to a wall. The sphere is pushed away from the wall by a stick. The forces acting on the sphere are shown in the second diagram. Which of the following statements is wrong

- (a) $P = W \tan \theta$
- (b) $\vec{T} + \vec{P} + \vec{W} = 0$
- (c) $T^2 = P^2 + W^2$
- (d) T = P + W

13. The speed of a boat is 5 km/h in still water. It crosses a river of width 1 km along the shortest possible path in 15 minutes. The velocity of the river water is

- (a) 1 km/h
- (b) 3 kmch
- (c) 4 km/h
- (d) 5 km/h

14. A man crosses a 320 m wide river perpendicular to the current in 4 minutes. If in still water he can swim with a speed 5/3 times that of the current, then the speed of the current, in m/min is

- (a) 30
- (b) 40
- (c) 50
- (d) 60,

Assertion & Reason: Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion

- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. **Assertion:** $\overrightarrow{A} \times \overrightarrow{B}$ is perpendicular to both $\overrightarrow{A} + \overrightarrow{B}$ as well as $\overrightarrow{A} \overrightarrow{B}$.

Reason: $\overrightarrow{A} + \overrightarrow{B}$ as well as $\overrightarrow{A} - \overrightarrow{B}$ lie in the plane containing \overrightarrow{A} and \overrightarrow{B} . but $\overrightarrow{A} \times \overrightarrow{B}$ lies perpendicular to the plane containing \overrightarrow{A} and \overrightarrow{A} .

2. **Assertion** Angle between $\hat{i} + \hat{j}$ and \hat{i} is 45°.

Reason $\hat{i} + \hat{j}$ is equally inclined to both \hat{i} and \hat{j} and the angle between \hat{i} and \hat{j} is 90°

3 **Assertion** If θ be the angle between \overrightarrow{A} and \overrightarrow{B} , then $\tan \theta = \frac{\overrightarrow{A} \times \overrightarrow{B}}{\overrightarrow{A} \cdot \overrightarrow{B}}$

Reason $\overrightarrow{A} \times \overrightarrow{B}$ is perpendicular to \overrightarrow{A} . \overrightarrow{B}

4. **Assertion** $|\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{A} - \overrightarrow{B}||$ then angle between \overrightarrow{A} and \overrightarrow{B} is 90°

Reason $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$.

5. **Assertion** Vector product of two vectors is an axial vector

Reason If vec \overrightarrow{v} instantaneous velocity, \overrightarrow{r} = radius vector and $\overrightarrow{\omega}$ = angular velocity, then $\overrightarrow{\omega} = \overrightarrow{v} \times \overrightarrow{r}$.

6. **Assertion** Minimum number of non-equal vectors in a plane required to give zero resultant is three.

Reason If $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = \overrightarrow{0}$. then they must lie in one plane.

7. **Assertion** Relative velocity of A w.r.t. B is greater than the velocity of either, when they are moving in opposite directions.

Reason Relative velocity of A w.r.t. $B = \vec{v}_A - \vec{v}_B$

8. **Assertion** Vector addition of two vectors \overrightarrow{A} and \overrightarrow{B} commutative.

Reason $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$

9. Assertion \overrightarrow{A} . $\overrightarrow{B} = \overrightarrow{B}$. \overrightarrow{A}

Reason Dot product of twe vectors is commutative.

10. Assertion $\vec{\tau} = \vec{r} \times \vec{F}$ and $\vec{\tau} \neq \vec{F} \times \vec{r}$

Reason Cross product of vectors is commutative.

11. **Assertion** A negative acceleration of a body is associated with slowing down of a body.

Reason Acceleration is vector quantity.

12. **Assertion** A physical quantity cannot be called as a vector if its magnitude is zero.

Reason A vector has both, magnitude and direction.

13. **Assertion** The sum of two vectors can be zero.

Reason The vector cancel each other, when they are equal and opposite.

14. **Assertion** Two vectors are said to be like vectors if they have same direction but different magnitude.

Reason Vector quantities do not have specific direction.

- 15. **Assertion** The scalar product of two vectors can be zero, **Reason** If two vectors are perpendicular to each ether, their scalar product will be zero.
- 16. **Assertion** Multiplying any vector by an scalar is a meaningful operations. **Reason** In uniform metion speed remains constant.
- 17. **Assertion** A null vector is a vector whose magritude is zero and direction is arbitrary. **Reason** A null vector does not exist.
- 18. **Assertion** If dot product and cross product of \overrightarrow{A} and \overrightarrow{B} are zero, it implies that one of the vector \overrightarrow{A} and \overrightarrow{B} must be a null vector.

Reason Null sector is a vector with zero magnitude.

- 19. **Assertion** The cross product of a vector with itself is a null vector. **Reason** The cross-product of two vectors results in a vector quantity.
- 20. **Assertion** The minimum number of nen coplanar vectors whose sum can be zero, is four. **Reason** The resultant of two vectors of unequal magnitude can be zero.
- 21. **Assertion** \overrightarrow{A} . $\overrightarrow{B} = \overrightarrow{B}$. \overrightarrow{C} , then \overrightarrow{A} may not always be equal to \overrightarrow{C} **Reason** The dot product of two vectors involves cosine of the angle between the twe vectors.
- 22. **Assertion** Vector addition is commutative. **Reason** $(\overrightarrow{A} + \overrightarrow{B}) \neq (\overrightarrow{B} + \overrightarrow{B})$.

ANSWER KEY

Fundamentals of Vectors

1-d, 2-b, 3-c, 4-d, 5-d, 6-a, 7-a, 8-b, 9-b, 10-d, 11-d, 12-d, 13-a, 14-b, 15-c, 16-c, 17-a, 18-b, 19-c, 20-c, 21-d, 22-d, 23-b, 24-d, 25-b, 26-b, 27-a, 28-a, 29-a, 30-d, 31-a, 32-b, 33-a, 34-a

Addition and Subtraction of Vectors

1-a, 2-b, 3-d, 4-b, 5-b, 6-a, 7-b, 8-a, 9-d, 10-b, 11-d, 12-c, 13-a, 14-c, 15-c, 16-c, 17-c 18-c, 19-c, 20-b, 21-a, 22-d, 23-d, 24-a, 25-c, 26-b, 27-b, 28-a, 29-b, 30-a, 31-c, 32-c, 33-c, 34-d, 35-a, 36-c, 37-d, 38-a, 39-c, 40-d, 41-a, 42-b, 43-d, 44-d, 45-a, 46-c, 47-d 48-a, 49-a, 50-c, 51-c, 52-a, 53-d

Multiplication of Vectors

1-c, 2-b, 3-d, 4-a, 5-a, 6-b, 7-c, 8-b, 9-b, 10-d, 11-b, 12-d, 13-c, 14-d, 15-c, 16-c, 17-b 18-c, 19-b, 20-a, 21-a, 22-c, 23-a, 24-b, 25-c, 26-d, 27-d, 28-b, 29-b, 30-b, 31-d, 32-c, 33-d, 34-b, 35-d, 36-b, 37-a, 38-b, 39-a, 40-a, 41-d, 42-d, 43-c, 44-b, 45-a, 46-a, 47-a, 48-d, 49-d, 50-a, 51-b, 52-b, 53-d, 54-a, 55-c, 56-d, 57-a, 58-b, 59-c

Lami's Theorem

1-c, 2-a, 3-b, 4-c, 5-b,

Relative Velocity

1-b, 2-b, 3-c, 4-c, 5-d, 6-a, 7-c, 8-c, 9-d, 10-a/c, 11-b, 12-b, 13-d, 14-b

Critical Thinking Questions

1-c, 2-c, 3-c, 4-c, 5-b, 6-b, 7-d, 8-d, 9-b, 10-c, 11-a, 12-d, 13-b, 14-d

Assertion and Reason

1-a, 2-a, 3-d, 4-b, 5-c, 6-b, 7-a, 8-b, 9-a, 10-c, 11-b, 12-e, 13-a, 14-c, 15-a, 16-b, 17-c, 18-b, 19-b, 20-c, 21-a, 22-c