PHYSICS

Ignescent Gurukul

Work, Power & Energy

Multiple Choice Questions:

1. A bicyclist comes to a skidding stop in 10 m. During this process, the force on the bicycle due to the road is 200N and is directly opposed to the motion. The work done by the cycle on the road is (a) + 2000 J(d) -20,000 J (b) -200J (c) zero **2.** Force of 50 Nacting on a body at an angle θ with horizontal. If 150 J work is done by displacing it 3 m, then θ is (c) 0° (d) 45° (a) 60° (b) 30° **3.** A particle is pushed by forces $2\hat{i} + 3\hat{j} - 2k$ and $5\hat{i} - j - 3\hat{k}$ simultaneously and it is displaced from point $2\hat{i} + 3\hat{j} - 2\hat{k}$ to point $2\hat{i} - \hat{j} + 3\hat{k}$. The work done is (a) 7 units (b) -7 units (c) 10 units (d) -10 units **4.** Consider a force $F = -x\hat{j} + y\hat{j}$. The work done by this force in moving a particle from point A (1, 0) to B (0, 1) along the line segment is (all quantities are in SI units) B (0, 1) (a) $\frac{3}{2}$ (b) 2 (c) 1 $(d)\frac{1}{2}$ (0, 0)5. A body moves from point A to B under the action of a force varying in magnitude as shown in figure, then the work done is (force is expressed in newton and displacement 20 15 in meter) 10 (a) 30 J (b) 22.5 J 0 -5 (c) 25 J -10 (d) 27 J -15 6. A string of length L and force constant K is stretched to obtain extension l. It is further stretched to obtain extension l_1 . The work done in second stretching is $(c)\frac{1}{2}k(l^2+l_1^2)$ $(d) \frac{1}{2} k (l_1^2 + l_2^2)$ (a) $\frac{1}{2}$ kl₁ (2l +l₁) (b) $\frac{1}{2}$ kl₁²

7. A uniform chain of length *l* and mass *m* is lying on a smooth table and one-third of its length is hanging vertically down over the edge of the table. If g is acceleration due to gravity, work required to pull the hanging part on to the table is

(a) mgl (b) $\frac{mgl}{3}$ (c) $\frac{mgl}{9}$ (d) $\frac{mgl}{18}$

8. If W_1 , W_2 and W_3 are the work done in moving a particle from A and B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m, the relation between W_1 , W_2 and W_3 is

Location: Gariahat, Kolkata

~1~

8340353648

(a) $W_1 > W_2 > W_3$ (b) $W_1 = W_2 = W_3$ (c) $W_1 < W_2 < W_3$ (d) $W_2 > W_1 > W_3$ A
9. Amongst the given graphs which one correctly represents the variation of the kinetic energy (K) of a body with velocity (v) ?
(a) $\begin{pmatrix} K \\ b \end{pmatrix} \begin{pmatrix} K \\ c \end{pmatrix} \begin{pmatrix} K \\ b \end{pmatrix} \begin{pmatrix} K \\ c \end{pmatrix} \begin{pmatrix} K \\ b \end{pmatrix} \begin{pmatrix} K \\ c \end{pmatrix} $
10. The kinetic energy of a body of mass 4 kg and momentum 6 N-s will be(a) 3.5 J(b) 5.5 J(c) 2.5 J(d) 4.5 J
11. For a moving particle (mass m , velocity v) having a momentum ρ , which one of the following correctly describes the kinetic energy of the particle?
(a) $\frac{p^2}{2m}$ (b) $\frac{p}{2m}$ (c) $\frac{V^2}{2m}$ (d) $\frac{V}{2m}$
12. Two bodies of masses 4 kg and 5 kg are moving with equal momentum. Then, the ratio of their respective kinetic energies is
(a) 4:5 (b) 2:1 (c) 1:3 (d) 5:4
13. A heavy body and a light body have same kinetic energy. Which will have larger linear momentum?(a) Heavy body(b) Light body
(c) Both have same linear momenta (d) None of the above
14. A mass of 5 kg is moving along a circular path of radius 1 m. If the mass moves with 300
rev/min, its kinetic energy (in J) would be (a) $250 \pi^2$ (b) $100 \pi^2$ (c) $5 \pi^2$ (d) zero
15. Two moving objects ($m_1 > m_2$) having same kinetic energy are stopped by application of equal retarding force. Which object will come to rest at shorter distance?(a) Bigger(b) Smaller(c) Both at same distance(d) Cannot say
16. A particle which is experiencing a force, is given by $= 3\hat{i} - 12\hat{j}$, undergoes a displacement of $d = 4\hat{i}$. If the particle had a kinetic energy of 3 <i>J</i> at the beginning of the displacement, what is its kinetic energy at the end of the displacement?
(a) 9 J (b) 15 J (c) 12 J (d) 10 J
17. A particle moves in one dimension from rest under the influence of a force that varies with the distance travelled by the particle as shown in the figure. The kinetic energy of the particle after it has travelled 3 m is
(a) 4 J (b) 2.5 J (c) 6.5 J (d) 5 J $\stackrel{O }{\underset{(in m)}{\overset{1 2 3}{}}}$
0240252540

Location: Gariahat, Kolkata www.ignescentgurukul.com

8340353648

SICS	Igne	escent Gurukul	Class 11
18. When a per-	son lifts a brick above the	surface of the earth, the	en its potential energy
(a) increases	(b) decreases	(c) remains same	(d) None of these
	spring of spring constant <i>i</i> <i>y</i> to 2 <i>y</i> . The increase in it		potential energy <i>E</i> . It is now
(a) 3 <i>E</i>	(b) 2 <i>E</i>	(c) <i>E</i>	(d) 4 <i>E</i>
	ves 5 kcal of energy to a be		e can climbs by using this
energy, if his ef (a) 15m	ficiency is 28% and mass (b) 5m	is 60 kg? (c) 2.5 m	(d) 10 m
(a) 15m	(0) 511	(c) 2.5 m	(u) 10 m
-	lling freely under the action ain constant during the fal		cuum. Which of the following
(a) Kinetic ener		(b) Potential ener	
(c) Total mecha	inical energy	(d) Total linear m	omentum
22. A stone is p	rojected vertically up to r	each maximum height <i>h</i>	. The ratio of its kinetic energy
-	energy at a height $\frac{4}{5}h$, will	_	a me radio or no mnone energy
(a) 5: 4	(b) 4 : 5	(c) 1: 4	(d) 4 : 1
		nas an extension of 5 cm	n. The work done in extending it
from 5 cm to 15 $(-)$ 1 $(-)$			
(a) 16 <i>J</i>	(b) 8 <i>J</i>	(c) 32 <i>J</i>	(d) 24 <i>J</i>
24 . A 2 kg block			s. It strikes a uncompressed friction force is 15 N and spring
spring and com			incluin force is 15 N and spring
spring and com constant is 100	00 <i>N/m</i> . The spring comp	oresses by	
spring and com			(d) 8.5 cm
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor	00 <i>N/m.</i> The spring comp (b) 2.5 cm rk is done in sliding a 2 kg	oresses by (c) 11.0 cm g block up an inclined pl	(d) 8.5 cm
spring and com constant is 100 (a) 5.5 cm 25. 300 J of wor (taking, g = -	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga	oresses by (c) 11.0 cm g block up an inclined pl inst friction is	(d) 8.5 cm ane of height 10 m
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor	00 <i>N/m.</i> The spring comp (b) 2.5 cm rk is done in sliding a 2 kg	oresses by (c) 11.0 cm g block up an inclined pl	(d) 8.5 cm
spring and com constant is 100 (a) 5.5 cm 25. 300 J of wor ($taking, g = -$ (a) 200 J	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga	oresses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero	(d) 8.5 cm ane of height 10 m (d) 1000 <i>J</i> tion of position
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , $g = -$ (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poten of mass. If the particle is r	oresses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy <i>U</i> as a func	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position $3U_0^{U(r)}$
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , $g = -$ (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of	00 <i>N/m.</i> The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poter of mass. If the particle is r e at position 3r ₀ ?	oresses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy <i>U</i> as a func released from rest at pos	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position $U_0^{(f)}$ sition r_0 , what $U_0^{(f)}$
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , $g = -$ (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle	00 <i>N/m.</i> The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poter of mass. If the particle is r e at position 3r ₀ ?	oresses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy <i>U</i> as a func released from rest at pos	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position sition r_0 , what
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , $g = -$ (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of will its speed be	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poten of mass. If the particle is r	oresses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy <i>U</i> as a func	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position sition r_0 , what
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , <i>g</i> = - (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of will its speed be (a) $\sqrt{\frac{3U_0}{m}}$	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poter of mass. If the particle is r e at position $3r_0$? (b) $\sqrt{\frac{4U_0}{m}}$	presses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy U as a funct released from rest at post (c) $\sqrt{\frac{2U_0}{m}}$	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position sition r_0 , what (d) $\sqrt{\frac{36}{m}}$ U(r)
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , <i>g</i> = - (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of will its speed bo (a) $\sqrt{\frac{3U_0}{m}}$ 27. A pebble is a	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poter of mass. If the particle is r e at position $3r_0$? (b) $\sqrt{\frac{4U_0}{m}}$ attached to one end of a st	presses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy U as a funct released from rest at pos (c) $\sqrt{\frac{2U_0}{m}}$ tring and rotated in a ve	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position sition r_0 , what (d) $\sqrt{\frac{36}{m}}$ $U_0^{(f)}$ $U_0^{($
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , <i>g</i> = - (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of will its speed bo (a) $\sqrt{\frac{3U_0}{m}}$ 27. A pebble is a	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poter of mass. If the particle is r e at position $3r_0$? (b) $\sqrt{\frac{4U_0}{m}}$	presses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy U as a funct released from rest at pos (c) $\sqrt{\frac{2U_0}{m}}$ tring and rotated in a ve	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position sition r_0 , what (d) $\sqrt{\frac{36}{m}}$ $U_0^{(f)}$ $U_0^{($
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , <i>g</i> = - (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of will its speed be (a) $\sqrt{\frac{3U_0}{m}}$ 27. A pebble is a the position of <i>r</i> (a) <i>A</i> (b) B	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poter of mass. If the particle is r e at position $3r_0$? (b) $\sqrt{\frac{4U_0}{m}}$ attached to one end of a st	presses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy U as a funct released from rest at pos (c) $\sqrt{\frac{2U_0}{m}}$ tring and rotated in a ve	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position sition r_0 , what (d) $\sqrt{\frac{36}{m}}$ ertical circle. If string breaks at w, it will break at
spring and com constant is 100 (a) 5.5 cm 25. 300 <i>J</i> of wor (<i>taking</i> , <i>g</i> = - (a) 200 <i>J</i> 26. The graph b <i>r</i> for a particle of will its speed bo (a) $\sqrt{\frac{3U_0}{m}}$ 27. A pebble is a the position of n (a) A	00 <i>N/m</i> . The spring comp (b) 2.5 cm rk is done in sliding a 2 kg – 10 ms ²). Work done aga (b) 100 <i>J</i> below represents the poter of mass. If the particle is r e at position $3r_0$? (b) $\sqrt{\frac{4U_0}{m}}$ attached to one end of a st	presses by (c) 11.0 cm g block up an inclined pl inst friction is (c) zero ntial energy U as a funct released from rest at pos (c) $\sqrt{\frac{2U_0}{m}}$ tring and rotated in a ve	(d) 8.5 cm ane of height 10 m (d) 1000 J tion of position sition r_0 , what (d) $\sqrt{\frac{36}{m}}$ $U_0^{(f)}$ $U_0^{($

~ 3 ~

PHYSICS Ignescent Gurukul Class 11 2025

29. A man can do work of 600 J in 2 min, then man's power is (a) 7.5 W (b) 10 W (c) 5 W (d) 15 W 30. A particle is acted by a constant power. Then, which of the following physical quantity remains constant? (a) Speed (b) Rate of change of acceleration (c) C Kinetic energy (d) Rate of change of kinetic energy (d) Rate of change of kinetic energy 31. An object of mass <i>m</i> moves horizontally, increasing in speed from 0 to <i>v</i> in a time <i>t</i> . The power necessary to accelerate the object during this time period is (d) $\frac{mv^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 <i>k</i> , the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to (take, 1 HP = 746 W and $g = 10 ms^{-2}$) (d) $1.7 ms^{-1}$ 33. A car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is (d) $0 n y \Pi$ (d) $1 o n \Pi$ 1. total external force acting on the system is finite and time of collision is negligible (d) $0 n y \Pi$ (d) $1 o n \Pi$ 3. for a system to follow the law of conservation of 1. Sins -1 (c) $0 3 ms^{-1}$ and $0 3 ms^{-1}$ (b) $0 n y \Pi$ (d) $0 n y \Pi$ (d) $1 o n \Pi$ (d) $1 o n $	(a) 5: 1	(b) 2 : 3	(c) 5: 2	(d) 7: 2
(a) 7.5 W(b) 10 W(c) 5 W(d) 15 W 30. A particle is acted by a constant power. Then, which of the following physical quantity remains constant?(a) Speed(b) Rate of change of acceleration(c) Kinetic energy(d) Rate of change of kinetic energy 31. An object of mass <i>m</i> moves horizontally, increasing in speed from 0 to <i>v</i> in a time <i>t</i> . The power necessary to accelerate the object during this time period is(a) $\frac{mV^2 t}{2}$ (b) $\frac{mV^2}{2}$ (c) $2 mV^2$ (d) $\frac{mV^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 <i>k</i> , the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to (take, 1 HP = 746 W and $g = 10 ms^{-2}$)(a) 2.0 ms^{-1}(b) 1.5 ms^{-1}(c) 1.9 ms^{-1}(d) 1.7 ms^{-1}33. A car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportione (a) $t^2 P$ (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) $1/\sqrt{m}$ 34. For a system to follow the law of conservation of linear momentum during a collision, the condition isI. total external force acting on the system is finite and time of collision is negligibleIII. total external force acting on the system is finite and time of linear is negligibleIII. total external force acting on the system is finite and time of collision respectively, collelastically in one dimension. The velocities of 0.5 ms^{-1} and -0.3 ms^{-1} respectively, collelastically in one dimension. The velocities of 0.5 ms^{-1} and 0.3 ms^{-1} experiences a perfectly elastic collision with another particle of mass 2	29. A man can do w	ork of 600 <i>J</i> in 2 m	iin, then man's power is	
remains constant? (a) Speed (b) Rate of change of acceleration (c) Kinetic energy (d) Rate of change of kinetic energy 31. An object of mass <i>m</i> moves horizontally, increasing in speed from 0 to <i>v</i> in a time <i>t</i> . The power necessary to accelerate the object during this time period is (a) $\frac{mv^2 t}{2}$ (b) $\frac{mv^2}{2}$ (c) $2 mV^2$ (d) $\frac{mv^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 <i>k</i> , the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to $(ake, 1 HP = 746 W and g = 10 ms^{-2})$ (a) $2.0 ms^{-1}$ (b) $1.5 ms^{-1}$ (c) $1.9 ms^{-4}$ (d) $1.7 ms^{-1}$ 33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is I total external force acting on the system is zero II, total external force acting on the system is zero II, total external force acting on the system is zero (a) $0 nly I$ (b) $0 nly II$ (c) $0 nly III$ (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms^{-1} and $-0.3 ms^{-1}$ respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) $-0.5 ms^{-1}$ and $0.3 ms^{-1}$ (d) $0.3 ms^{-1}$ and $0.5 ms^{-1}$ 36. A particle of mass 1g moving with a velocity $V_1 = (3i - 2j) ms^{-1}$ experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4j - 6k) ms^{-1}$. The veloc of the particle is (a) $2.3 ms^{-1}$ (b) $4.6 ms^{-1}$ (c) $9.2 ms^{-1}$ (d) $6ms^{-1}$ 37. A particle of mass n_1 moves with velocity v^{-1} collides with another particle at rest of equations of the collision is a set of the particle is (a) $2.3 ms^{-1}$ (b) $4.6 ms^{-1}$ (c) $9.2 ms^{-1}$ ((a) 7.5 W	(b) 10 W	(c) 5 W	(d) 15 W
remains constant? (a) Speed (b) Rate of change of acceleration (c) Kinetic energy (d) Rate of change of kinetic energy 31. An object of mass <i>m</i> moves horizontally, increasing in speed from 0 to <i>v</i> in a time <i>t</i> . The power necessary to accelerate the object during this time period is (a) $\frac{mv^2 t}{2}$ (b) $\frac{mv^2}{2}$ (c) $2 mV^2$ (d) $\frac{mv^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 <i>k</i> , the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to $(ake, 1 HP = 746 W and g = 10 ms^{-2})$ (a) $2.0 ms^{-1}$ (b) $1.5 ms^{-1}$ (c) $1.9 ms^{-4}$ (d) $1.7 ms^{-1}$ 33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is I total external force acting on the system is zero II, total external force acting on the system is zero II, total external force acting on the system is zero (a) $0 nly I$ (b) $0 nly II$ (c) $0 nly III$ (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms^{-1} and $-0.3 ms^{-1}$ respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) $-0.5 ms^{-1}$ and $0.3 ms^{-1}$ (d) $0.3 ms^{-1}$ and $0.5 ms^{-1}$ 36. A particle of mass 1g moving with a velocity $V_1 = (3i - 2j) ms^{-1}$ experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4j - 6k) ms^{-1}$. The veloc of the particle is (a) $2.3 ms^{-1}$ (b) $4.6 ms^{-1}$ (c) $9.2 ms^{-1}$ (d) $6ms^{-1}$ 37. A particle of mass n_1 moves with velocity v^{-1} collides with another particle at rest of equations of the collision is a set of the particle is (a) $2.3 ms^{-1}$ (b) $4.6 ms^{-1}$ (c) $9.2 ms^{-1}$ (30 A particle is acte	d by a constant no	war Than which of the f	ollowing physical quantity
(c) Kinetic energy(d) Rate of change of kinetic energy 31. An object of mass <i>m</i> moves horizontally, increasing in speed from 0 to <i>v</i> in a time <i>t</i> . The power necessary to accelerate the object during this time period is(a) $\frac{mv^2 t}{2}$ (b) $\frac{mv^2}{2}$ (c) $2 mV^2$ (d) $\frac{mv^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 <i>k</i> , the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to $(take, 1 HP = 746 W and g = 10 ms^{-2})$ (a) $2.0 ms^{-1}$ (b) $1.5 ms^{-1}$ (c) $1.9 ms^{-4}$ (d) $1.7 ms^{-1}$ 33. A car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition isI. total external force acting on the system is zeroII. total external force acting on the system is zero(a) Only I(b) Only II(c) Only III(d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms^{-1} and $-0.3 . ms^{-1}$ respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -0.5 ms^{-1} and 0.5 ms^{-1}(d) $0.3 ms^{-1} and 0.5 ms^{-1}$ 36. A particle of mass 1g moving with a velocity $V_1 = (3i - 2j) ms^{-1}$ experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4j - 6k) ms^{-1}$. The velocit of the particle is(a) 2.3 ms^{-1}(b) 4.6 ms^{-1}(c) 9.2 ms^{-1}(d) 6ms^{-1} <td< td=""><td>=</td><td>a by a constant po</td><td>wer. men, which of the f</td><td>Showing physical qualitity</td></td<>	=	a by a constant po	wer. men, which of the f	Showing physical qualitity
31. An object of mass <i>m</i> moves horizontally, increasing in speed from 0 to <i>v</i> in a time <i>t</i> . The power necessary to accelerate the object during this time period is (a) $\frac{mv^2 t}{2}$ (b) $\frac{mv^2}{2}$ (c) $2 mV^2$ (d) $\frac{mv^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 <i>k</i> , the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to (take, 1 HP = 746 W and $g = 10 \text{ ms}^{-2}$) (a) 2.0 ms^{-1} (b) 1.5 ms^{-1} (c) 1.9 ms^{-4} (d) 1.7 ms^{-1} 33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude <i>P</i> ₀ . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is I. total external force acting on the system is zero II. total external force acting on the system is zero (a) 0 nly I (b) 0 nly II (c) 0 nly III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms^{-1} and -0.3 ms^{-1} respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -0.5 ms^{-1} and 0.3 ms^{-1} (d) 0.3 ms^{-1} and 0.5 ms^{-1} 36. A particle of mass 1g moving with a velocity $V_1 = (3t - 2t)$ ms^{-1} experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4t)^2 - 6t)^2$ ms^{-1}. The velocities of the particle is (a) 2.3 ms^{-1} (b) 4.6 ms^{-1} (c) 9.2 ms^{-1} (d) 6 ms^{-1} 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations is $v^2 + 1/2 +$			(b) Rate of change of acc	eleration
power necessary to accelerate the object during this time period is (a) $\frac{mV^2 t}{2}$ (b) $\frac{mV^2}{2}$ (c) $2 mV^2$ (d) $\frac{mV^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 k, the frictional force on the elevator is 4000 N, the speed of the elevator at full load is close to $(take, 1 HP = 746 W \text{ and } g = 10 \text{ ms}^{-2})$ (a) 2.0 ms^{-1} (b) 1.5 ms^{-1} (c) 1.9 ms^{-1} (d) 1.7 ms^{-1} 33. A car of mass m starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 111. total internal force acting on the system is zero (a) Only 1 (b) Only 11 (c) Only 111 (d) 1 or 11 35. Two identical balls A and B having velocities of 0.5 ms^{-1} and -0.3 ms^{-1} respectively, cole elastically in one dimension. The velocities of B and A after the collision respectively will be (a) -05 ms^{-1} and 0.5 ms^{-1} (d) 0.3 ms^{-1} and 0.5 ms^{-1} 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2f)$ ms^{-1} experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4f - 6\hat{k}) \text{ ms}^{-1}$. The veloc of the particle is (a) 2.3 ms^{-1} (b) 4.6 ms^{-1} (c) 9.2 ms^{-1} (d) 6ms^{-1} 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equations is the particle of second particle after the elastic collision is	(c) Kinetic energy		(d) Rate of change of kind	etic energy
power necessary to accelerate the object during this time period is (a) $\frac{mV^2 t}{2}$ (b) $\frac{mV^2}{2}$ (c) $2 mV^2$ (d) $\frac{mV^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 k, the frictional force on the elevator is 4000 N, the speed of the elevator at full load is close to $(take, 1 HP = 746 W \text{ and } g = 10 \text{ ms}^{-2})$ (a) 2.0 ms^{-1} (b) 1.5 ms^{-1} (c) 1.9 ms^{-1} (d) 1.7 ms^{-1} 33. A car of mass m starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 111. total internal force acting on the system is zero (a) Only 1 (b) Only 11 (c) Only 111 (d) 1 or 11 35. Two identical balls A and B having velocities of 0.5 ms^{-1} and -0.3 ms^{-1} respectively, cole elastically in one dimension. The velocities of B and A after the collision respectively will be (a) -05 ms^{-1} and 0.5 ms^{-1} (d) 0.3 ms^{-1} and 0.5 ms^{-1} 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2f)$ ms^{-1} experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4f - 6\hat{k}) \text{ ms}^{-1}$. The veloc of the particle is (a) 2.3 ms^{-1} (b) 4.6 ms^{-1} (c) 9.2 ms^{-1} (d) 6ms^{-1} 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equations is the particle of second particle after the elastic collision is	31 . An object of mas	s <i>m</i> moves horizoi	ntally, increasing in speed	from 0 to <i>v</i> in a time <i>t</i> . The
(a) $\frac{mv^2 t}{2}$ (b) $\frac{mv^2}{2}$ (c) $2 mV^2$ (d) $\frac{mv^2}{2t}$ 32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 k, the frictional force on the elevator is 4000 N, the speed of the elevator at full load is close to $(take, 1 HP = 746 W and g = 10 ms^{-2})$ (a) 2.0 ms ⁻¹ (b) 1.5 ms ⁻¹ (c) 1.9 ms ⁻¹ (d) 1.7 ms ⁻¹ 33. A car of mass m starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 111. total internal force acting on the system is zero (a) Only 1 (b) Only 11 (c) Only 111 (d) I or 11 35. Two identical balls A and B having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, colleastically in one dimension. The velocities of B and A after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.3 ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ . 36. A particle of mass 1g moving with a velocity $V_1 = (3i - 2i)$ ms ⁻¹ experiences a perfectively elastic collision with another particle of mass 2 g and velocity $V_2 = (4j - 6k)$ ms ⁻¹ . The velocities of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^- collides with another particle at rest of equations in the specifies of mass. The velocity of second particle after the elastic collision is	-			
32. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 k, the frictional force on the elevator is 4000 N, the speed of the elevator at full load is close to $(take, 1 HP = 746 W and g = 10 ms^{-2})$ (a) 2.0 ms ⁻¹ (b) 1.5 ms ⁻¹ (c) 1.9 ms ⁻⁴ (d) 1.7 ms ⁻¹ 33. A car of mass m starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is finite and time of collision is negligible 111. total external force acting on the system is finite and time of collision is negligible 113. Two identical balls A and B having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, colleastically in one dimension. The velocities of B and A after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and 0.3 ms ⁻¹ (c) -0.3 , ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ . 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfect y elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The velocities of the particle is (a) 2.3 ms ⁻¹ (b) 4.6 ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^-1 collides with another particle at rest of equations of the particle of mass m_1 moves with velocity v^-1 collides with another particle at rest of equations in the set of the elastic collision is set.			с і	
the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to $(take, 1 HP = 746 W and g = 10 ms^{-2})$ (a) 2.0 ms ⁻¹ (b) 1.5 ms ⁻¹ (c) 1.9 ms ⁻¹ (d) 1.7 ms ⁻¹ 33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 111. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05 . ms ⁻¹ and 0.3 ms ⁻¹ (d) 0.3 ms ⁻¹ and -0.3 . ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3t - 2t)$ ms ⁻¹ experiences a perfective elastic collision with another particle of mass 2g and velocity $V_2 = (4t f - 6t k)$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6 . ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equ mass. The velocity of second particle after the elastic collision is	(u) ₂	$\begin{pmatrix} 0 \end{pmatrix}_2$	(0) 2 111	(u) = 2t
the frictional force on the elevator is 4000 <i>N</i> , the speed of the elevator at full load is close to $(take, 1 HP = 746 W and g = 10 ms^{-2})$ (a) 2.0 ms ⁻¹ (b) 1.5 ms ⁻¹ (c) 1.9 ms ⁻¹ (d) 1.7 ms ⁻¹ 33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 111. total internal force acting on the system is zero (a) Only 1 (b) Only 11 (c) Only 111 (d) I or 11 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -0.5 ms ⁻¹ and 0.5 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3t^2 - 2t)$ ms ⁻¹ experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4t^2 - 6t^2)$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6 ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equations of the particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equations is not particle after the elastic collision is not particle at rest of equations is the velocity of second particle after the elastic collision is	32. A 60 HP electric	motor lifts an elev	ator having a maximum t	otal load capacity of 2000 kg. If
(take, 1 <i>HP</i> = 746 <i>W</i> and <i>g</i> = 10 ms ⁻²) (a) 2.0 ms ⁻¹ (b) 1.5 ms ⁻¹ (c) 1.9 ms ⁻¹ (d) 1.7 ms ⁻¹ 33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 111. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0.3. ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3i - 2j)$ ms ⁻¹ experiences a perfectively elastic collision with another particle of mass 2 g and velocity $V_2 = (4j - 6k)$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equ mass. The velocity of second particle after the elastic collision is				
(a) 2.0 ms ⁻¹ (b) 1.5 ms ⁻¹ (c) 1.9 ms ⁻¹ (d) 1.7 ms ⁻¹ 33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is I. total external force acting on the system is zero II. total external force acting on the system is finite and time of collision is negligible III. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, cole elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and 0.3 ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3i - 2j)$ ms ⁻¹ experiences a perfectivel elastic collision with another particle of mass 2 g and velocity $V_2 = (4j - 6k)$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^- collides with another particle at rest of equations of the elastic collision is set of the elastic collision is masked of the elastic collision is masked of the elastic collision is masked of the elastic collision is elaster of the elaster of elaster of the elaster of elaster of the elaster				
33. <i>A</i> car of mass <i>m</i> starts from rest and accelerates, so that the instantaneous power delive to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 111. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, col elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0.3. ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfective elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equ mass. The velocity of second particle after the elastic collision is				(d) 1.7 ms ⁻¹
to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is I. total external force acting on the system is zero II. total external force acting on the system is finite and time of collision is negligible III. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, col- elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0.3. ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfectively elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equ mass. The velocity of second particle after the elastic collision is				
to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional (a) $t^2 P$ (b) $t^{1/2}$ (c) $t^{-1/2}$ (d) t/\sqrt{m} 34. For a system to follow the law of conservation of linear momentum during a collision, the condition is I. total external force acting on the system is zero II. total external force acting on the system is finite and time of collision is negligible III. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, col- elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0.3. ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfectively elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equ mass. The velocity of second particle after the elastic collision is	33. <i>A</i> car of mass <i>m</i>	starts from rest a	nd accelerates, so that the	instantaneous power delivered
34. For a system to follow the law of conservation of linear momentum during a collision, the condition is 1. total external force acting on the system is zero 11. total external force acting on the system is finite and time of collision is negligible 11. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, colleastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0.3. ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfectly elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations is the velocity of second particle after the elastic collision is				
condition is I. total external force acting on the system is zero II. total external force acting on the system is finite and time of collision is negligible III. total internal force acting on the system is zero (a) Only I (b) Only II (c) Only III (d) I or II 35. Two identical balls <i>A</i> and <i>B</i> having velocities of 0.5 ms ⁻¹ and -0 3. ms ⁻¹ respectively, col elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0 3. ms ⁻¹ (c) -0 3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfectly elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4 6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations of the velocity of second particle after the elastic collision is	(a) $t^2 P$	(b) $t^{1/2}$	(c) $t^{-1/2}$	(d) t/\sqrt{m}
(a) Only I(b) Only II(c) Only III(d) I or II 35. Two identical balls A and B having velocities of 0.5 ms ⁻¹ and -0.3 . ms ⁻¹ respectively, col elastically in one dimension. The velocities of B and A after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0.3. ms ⁻¹ (c) -0.3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfectly elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4.6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations. The velocity of second particle after the elastic collision is	condition is			nentum during a collision, the
elastically in one dimension. The velocities of <i>B</i> and <i>A</i> after the collision respectively will be (a) -05. ms ⁻¹ and 0.3 ms ⁻¹ (b) 0.5 m/s ⁻¹ and -0 3. ms ⁻¹ (c) -0 3. ms ⁻¹ and 0.5 ms ⁻¹ (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ 36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j})$ ms ⁻¹ experiences a perfectly elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4 6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6 ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations. The velocity of second particle after the elastic collision is	condition is I. total external forc II. total external for	e acting on the sys ce acting on the sy	stem is zero stem is finite and time of	
36. A particle of mass 1g moving with a velocity $V_1 = (3\hat{i} - 2\hat{j}) \text{ ms}^{-1}$ experiences a perfectly elastic collision with another particle of mass 2 g and velocity $V_2 = (4\hat{j} - 6\hat{k}) \text{ ms}^{-1}$. The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4 6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equations. The velocity of second particle after the elastic collision is	condition is I. total external forc II. total external for III. total internal for	e acting on the sys ce acting on the sy ce acting on the sy	stem is zero stem is finite and time of stem is zero	collision is negligible
elastic collision with another particle of mass 2 g and velocity $V_2 = (4 \hat{j} - 6 \hat{k}) \text{ ms}^{-1}$. The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4 6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equ mass. The velocity of second particle after the elastic collision is	condition is I. total external forc II. total external for III. total internal for (a) Only I 35. Two identical ba elastically in one din (a) -05. ms -1 and 0.	te acting on the system acting on the system acting on the sy (b) Only II (b) Only II (c) A and <i>B</i> having mension. The veloc 3 ms ⁻¹	stem is zero rstem is finite and time of rstem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and cities of <i>B</i> and <i>A</i> after the	collision is negligible (d) I or II I –0 3. ms ⁻¹ respectively, collide collision respectively will be
elastic collision with another particle of mass 2 g and velocity $V_2 = (4 \hat{j} - 6 \hat{k}) \text{ ms}^{-1}$. The veloc of the particle is (a) 2.3 ms ⁻¹ (b) 4 6. ms ⁻¹ (c) 9.2 ms ⁻¹ (d) 6ms ⁻¹ 37. A particle of mass m_1 moves with velocity v^{-1} collides with another particle at rest of equ mass. The velocity of second particle after the elastic collision is	condition is I. total external forc II. total external for III. total internal for (a) Only I 35. Two identical ba elastically in one din (a) -05. ms -1 and 0.	te acting on the system acting on the system acting on the sy (b) Only II (b) Only II (c) A and <i>B</i> having mension. The veloc 3 ms ⁻¹	stem is zero stem is finite and time of stem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and cities of <i>B</i> and <i>A</i> after the (b) 0.5 m/s ⁻¹ and -0 3. m	collision is negligible (d) I or II I –0 3. ms ⁻¹ respectively, collide collision respectively will be s ⁻¹
of the particle is (a) 2.3 ms^{-1} (b) 4.6 ms^{-1} (c) 9.2 ms^{-1} (d) 6 ms^{-1} 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations. The velocity of second particle after the elastic collision is	condition is I. total external forc II. total external for III. total internal for (a) Only I 35. Two identical ba elastically in one dir (a) -05. ms ⁻¹ and 0. (c) -0 3. ms ⁻¹ and 0.	te acting on the system acting on the system acting on the sy (b) Only II (b) Only II (c) (c) Only II (c)	stem is zero stem is finite and time of stem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and cities of <i>B</i> and <i>A</i> after the (b) 0.5 m/s ⁻¹ and -0 3. m (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹	collision is negligible (d) I or II I –0 3. ms ⁻¹ respectively, collide collision respectively will be s ⁻¹
(a) 2.3 ms^{-1} (b) 4.6 ms^{-1} (c) 9.2 ms^{-1} (d) 6 ms^{-1} 37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations. The velocity of second particle after the elastic collision is	condition is I. total external forc II. total external for III. total internal for (a) Only I 35. Two identical ba elastically in one dir (a) -05. ms ⁻¹ and 0. (c) -0 3. ms ⁻¹ and 0. 36. A particle of mat	te acting on the sys ce acting on the sy ce acting on the sy (b) Only II alls <i>A</i> and <i>B</i> having nension. The veloc 3 ms ⁻¹ 5 ms ⁻¹ 5 ms ⁻¹	Stem is zero (c) Only III (c) Only III (collision is negligible (d) I or II I –0 3. ms ⁻¹ respectively, collide collision respectively will be s ⁻¹ ms ⁻¹ experiences a perfectly
37. A particle of mass m_1 moves with velocity v^1 collides with another particle at rest of equations. The velocity of second particle after the elastic collision is	condition is I. total external force II. total external force III. total internal force (a) Only I 35. Two identical bac elastically in one direction (a) -05. ms -1 and 0. (c) -0 3. ms -1 and 0. 36. A particle of man- elastic collision with	te acting on the sys ce acting on the sy ce acting on the sy (b) Only II alls <i>A</i> and <i>B</i> having nension. The veloc 3 ms ⁻¹ 5 ms ⁻¹ 5 ms ⁻¹	Stem is zero (c) Only III (c) Only III (collision is negligible (d) I or II I –0 3. ms ⁻¹ respectively, collide collision respectively will be s ⁻¹ ms ⁻¹ experiences a perfectly
mass. The velocity of second particle after the elastic collision is	condition is I. total external forc II. total external for III. total internal for (a) Only I 35. Two identical ba elastically in one dir (a) -05. ms ⁻¹ and 0. (c) -0 3. ms ⁻¹ and 0. 36. A particle of ma- elastic collision with of the particle is	te acting on the sys ce acting on the sy ce acting on the sy (b) Only II alls <i>A</i> and <i>B</i> having nension. The veloc 3 ms ⁻¹ 5 ms ⁻¹ ss 1g moving with another particle o	Stem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and (c) 0.5 m/s ⁻¹ and -0 3. m (d) 0.3 ms ⁻¹ and 0.5 ms ⁻² a velocity $V_1 = (3\hat{i} - 2\hat{j})$ of mass 2 g and velocity V_1	collision is negligible (d) I or II I -0 3. ms ⁻¹ respectively, collide collision respectively will be s ⁻¹ ms ⁻¹ experiences a perfectly $f_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The velocity
	condition is I. total external forc II. total external for III. total internal for (a) Only I 35. Two identical ba elastically in one dir (a) -05. ms ⁻¹ and 0. (c) -0 3. ms ⁻¹ and 0. 36. A particle of ma- elastic collision with of the particle is	te acting on the sys ce acting on the sy ce acting on the sy (b) Only II alls <i>A</i> and <i>B</i> having nension. The veloc 3 ms ⁻¹ 5 ms ⁻¹ ss 1g moving with another particle o	Stem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and (c) 0.5 m/s ⁻¹ and -0 3. m (d) 0.3 ms ⁻¹ and 0.5 ms ⁻² a velocity $V_1 = (3\hat{i} - 2\hat{j})$ of mass 2 g and velocity V_1	collision is negligible (d) I or II I -0 3. ms ⁻¹ respectively, collide collision respectively will be s ⁻¹ ms ⁻¹ experiences a perfectly $f_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The velocity
	condition is I. total external force II. total external force III. total internal force (a) Only I 35. Two identical bac elastically in one direction (a) -05. ms -1 and 0. (c) -0 3. ms -1 and 0. 36. A particle of mass elastic collision with of the particle is (a) 2.3 ms -1 37. A particle of mass	the acting on the system of t	stem is zero stem is finite and time of stem is finite and time of stem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and cities of <i>B</i> and <i>A</i> after the (b) 0.5 m/s ⁻¹ and -0 3. m (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ a velocity $V_1 = (3\hat{\iota} - 2\hat{j})$ of mass 2 g and velocity V_1 (c) 9.2 ms ⁻¹ velocity v^1 collides with a	collision is negligible (d) I or II $1-03. \text{ ms}^{-1}$ respectively, collide collision respectively will be s ⁻¹ ms ⁻¹ experiences a perfectly $2 = (4\hat{j} - 6\hat{k}) \text{ ms}^{-1}$. The velocity (d) 6ms ⁻¹ nother particle at rest of equal
	 condition is I. total external force II. total external force III. total internal force (a) Only I 35. Two identical base elastically in one dimensional of the second sec	te acting on the system of th	stem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and cities of <i>B</i> and <i>A</i> after the (b) 0.5 m/s ⁻¹ and -0 3. m (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ a velocity $V_1 = (3\hat{i} - 2\hat{j})$ of mass 2 g and velocity V_1 (c) 9.2 ms ⁻¹ velocity v^1 collides with a after the elastic collision is	collision is negligible (d) I or II $1-03. \text{ ms}^{-1}$ respectively, collide collision respectively will be s ⁻¹ ms ⁻¹ experiences a perfectly $2 = (4\hat{j} - 6\hat{k}) \text{ ms}^{-1}$. The velocity (d) 6ms ⁻¹ nother particle at rest of equal
Gariahat, Kolkata www.ignescentgurukul.com	 condition is I. total external force II. total external force III. total internal force (a) Only I 35. Two identical base elastically in one dimensional of the second sec	te acting on the system of th	stem is zero (c) Only III g velocities of 0.5 ms ⁻¹ and cities of <i>B</i> and <i>A</i> after the (b) 0.5 m/s ⁻¹ and -0 3. m (d) 0.3 ms ⁻¹ and 0.5 ms ⁻¹ a velocity $V_1 = (3\hat{i} - 2\hat{j})$ of mass 2 g and velocity V_1 (c) 9.2 ms ⁻¹ velocity v^1 collides with a after the elastic collision is	collision is negligible (d) I or II d = 0.3. ms ⁻¹ respectively, collide collision respectively will be s ⁻¹ ms ⁻¹ experiences a perfectly $f_2 = (4\hat{j} - 6\hat{k})$ ms ⁻¹ . The velocity (d) 6ms ⁻¹ nother particle at rest of equal

(a) Total kinetic energy		(b) Total mecha	nical energy	
(c) Total linear momentum		(d) Speed of eac	h body	
39. Two objects o	of mass <i>m</i> each moving	g with speed <i>u</i> ms -1 col	lide at 90°, then final momentu	m
is (assume collisi		5 1	,	
(a) mu	(b) 2 mu	(c) $\sqrt{2}$ mu	(d) 2 √2 mu	
40 A body of may	$s 5 \times 10^3$ kg moving y	vith speed 2 ms ⁻¹ collide	s with a body of mass 15×10^3	kσ
=		in kinetic energy of the		
(a) 7.5 kJ	(b) 15 kJ	(c) 10 kJ	(d) 5 kJ	
				,
41. If the linear m	nomentum of a body is	s increased by 50%, the	n the kinetic energy of that bod	у
increases by				
(a) 100%	(b) 125%	(c) 225%	(d) 25%	
42 . A ball of mass	<i>m</i> moves with speed	v and strikes a wall hav	ing infinite mass and it returns	
	-	by the ball on the wall is	-	
(a) zero	(b) <i>mv J</i>	(c) <i>m</i> / <i>v</i>]	(d) <i>v/mJ</i>	
43. A body of mas	ss 5 kg is thrown verti	cally up with a kinetic e	nergy of 490 J. The height at	
which the kinetic	energy of the body be	ecomes half of the origin	al value is	
(a) 12.5 m	(b) 10 m	(c) 2.5 m	(d) 5 m	
4.4.70				
		4 s, respectively to lift a	n object to the same height <i>h</i> ,	
(a) 1:2	heir powers is (b) 1:1	(c) 2 :1	(d) 1:3	
(d) 1.2	(0) 1.1	(0) 2.1	(u) 1.5	
45. At time $t = 0$.	particle starts moving	g along the <i>x</i> -axis. If its k	inetic energy increases uniform	nlv
	-		<i>ⁿ</i> where the value of <i>n</i> is	-
(a) 1	(b) - ½	(c) 2	(d) 1/2	
46. A man of mas	s <i>m</i> , standing at the b	ottom of the staircase, o	f height <i>L</i> climbs it and stands a	at
	ongst the following st			
		equal to the rise in poter	itial energy <i>mgL</i> .	
	y all forces on man is z			
	the gravitational for			
	force from a step does hile the force exists.	some work because the	e point of application of the for	ce
does not move w	line the force exists.			
47. Which of the	following statement is	correct about non-cons	ervative force?	
	velocity of the object			
	the particular path ta			
· • •				
(c) It depends on	the initial and initial p			

~ 5 ~

PHYSICS

Ignescent Gurukul

- **48.** Which of the following statement is correct?
- (a) Conservation of mechanical energy does not consider only conservative force.
- (b) Conservation of energy consider both conservative and non-conservative forces.
- (c) Conservation of energy consider only conservative force.
- (d) Mass converted into energy in nuclear reaction is called mass-defect.

49. Which of the following statement does not specify an example of perfectly inelastic collision?

- (a) A bullet fired into a block if bullet gets embedded into block.
- (b) Capture of electrons by an atom.
- (c) Aman jumping on to moving boat.
- (d) A ball bearing striking another ball bearing.

50. Match the Column I (angle) with Column II (work done) and select the correct option from the codes given below.

_	Column I Column II
	A. 0 < 90° p. Friction
Codes A B C	B. $0 = 90^{\circ}$ q. Satellite rotating around the earth
(a) p q r	C. $0 > 90^{\circ}$ r. Coolic is lifting a luggage
(b) r q p (c) p r q	
(d) r p q	

51. A body is moved along a straight line by a machine delivering a power proportional to time $(P \propto t)$. Then, match the Column I with Column II and select the correct option from the codes given below.

Brenseien	Column I	Column II
	A. Velocity is p. proportional to	t
Codes	B. Displacement is q.	t^2
АВС	proportional to	
(a) p q r	C. Work done is r.	t ³
(b) r q p	proportional to	
(c) p q q	67	

(d) r p p

Assertion-Reasoning MCQs

(For question numbers 52 to 60, two statements are given-one labelled)Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) are as given below

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.

52. Assertion Stopping distance $\frac{Kinetic\ energy}{Stopping\ force}$

Reason Work done in stopping a body is equal to change in kinetic energy of the body.

Location: Gariahat, Kolkata

~ 6 ~

PHYSICS

Ignescent Gurukul

53. Assertion *A* spring of force constant *k* is cut into two pieces having lengths in the ratio 1 : 2. The force constant of series combination of the two parts is 2k / 3. **Reason** The spring connected in series are represented by $k = k_1 + k_2$.

54. Assertion According to the law of conservation of mechanical energy, change in potential energy is equal and opposite to the change in kinetic energy.Reason Mechanical energy is not conserved.

55. Assertion Decrease in mechanical energy is more in case of an object sliding up a relatively less inclined plane due to friction.

Reason The coefficient of friction between the block and the surface decreases with the increase in the angle of inclination.

56. Assertion For looping a vertical loop of radius *r*; the minimum velocity at lowest point should be $\sqrt{5g}r$. Reason In this event, the velocity at the highest point will be zero.

57. Assertion Kilowatt-hour is the unit of energy. **Reason** One kilowatt hour is equal to $3.6 \times 10^6 J$

58. Assertion There is no loss in energy in elastic collision. **Reason** Linear momentum is conserved in elastic collision.

59. Assertion Quick collision between two bodies is more violent than a slow collision; even when the initial and final velocities are identical. **Reason** The momentum is greater in first case.

60. Assertion Two particles are moving in the same direction do not lose all their energy in completely inelastic collision.

Reason Principle of conservation of momentum does not holds true for all kinds of collisions.

Case Based MCQs

Direction Answer the questions from 61-65 on the following case.

Work:

A farmer ploughing the field, a construction worker carrying bricks, a student studying for a competitive examination, an artist painting a beautiful landscape, all are said to be working. In physics, however, the word 'Work' covers a definite and precise meaning. Work refers to the force and the displacement over which it acts. Consider a constant force F acting on an object of mass m. The object undergoes a displacement d in the positive x-direction as shown in figure. The work done by the force is defined to be the product of

component of the force in the direction of the displacement and the magnitude of this displacement, thus $W = (F \cos \theta) d = F \times d.$

	oving around the sun ir earth by the force is	a circular orbit, is act	red upon by a force and hence
(a) zero	(b) positive	(c) negative	(d) None of the above
(a) A weight-lifter(b) A locomotive a	work done will be zero while holding a weight gainst gravity is runnir ng a suitcase on his hea e	of 100 kg on his shou ng on a level plane witl	h a speed of 60 kmh ^{- 1}
63. Find the angle $(-3 \hat{K})$ unit.	between force $\mathbf{F} = (3 \hat{\mathbf{i}})$	$+4\hat{j} - 5\hat{K}$) unit and o	displacement $\mathbf{d} = (5 \hat{\mathbf{i}} + 4 \hat{j})$
(a) cos ⁻¹ (0.49)	(b) cos ⁻¹ (0.32)	(c) $\cos^{-1}(0.60)$	(d) cos ⁻¹ (0.90)
64. Which of the fo I. If the displaceme II. If force applied i		s/are correct for work	a done to be zero?
-	placement are mutually		
(a) Only I	(b) I and II	(c) Only II	(d) I, II and III
its field. Consider t another, a positron (a) same as the san (b) less for the case weakens (c) more for the ca	two experiments; one in t . In same time t , the wine force law is involved	n which the charged pa york done on the two n d in the two experimen positron moves away n positron moves away	nore rapidly and the force on it a larger distance

Direction Answer the questions from 66-70 on the following case.

Kinetic Energy:

The energy possessed by a body by virtue of its motion is called kinetic energy. In other words, the amount of work done, a moving object can do before coming to rest is equal to its kinetic energy.

:. Kinetic energy, $KE = \frac{1}{2}mv^2$

where, *m* is a mass and *v* is the velocity of a body.

The units and dimensions of *KE* are Joule (in SI) and [ML² T⁻²], respectively. Kinetic energy of a body is always positive. It can never be negative.

66. Which of the diagrams shown in figure most closely shows the variation in kinetic energy of the earth as it moves once around the sun in its elliptical orbit?

Ignescent Gurukul

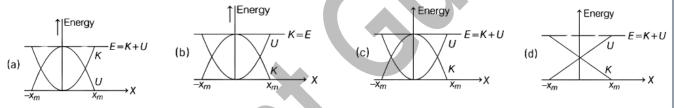
67. *A* force which is inversely proportional to the speed is acting on a body. The kinetic energy of the body starting from rest is (a) a constant (b) inversely proportional to time (c) directly proportional to time (d) directly proportional to square of time **68.** The kinetic energy of an air molecule $(10^{-21} J)$ in eV is (a) 6.2meV (b) 4.2meV (c) 10.4 meV (d) 9.7 meV 69. Two masses of 1 g and 4 g are moving with equal kinetic energy. The ratio of the magnitudes of their momentum is (b) $\sqrt{2}$:1 (a) 4 : 1 (c) 1:2 (d) 1:16 **70.** An object of mass 10 kg is moving with velocity of 10 ms⁻¹. Due to a force, its velocity become 20 ms⁻¹. Percentage increase in its KE is (d) 300% (a) 25% (b) 50% (c) 75% Direction Answer the questions from 71-75 on the following case. **PE of Spring:** There are many types of spring. Important among these are helical and spiral springs as shown in figure. (a) _______ (b) Usually, we assume that the springs are massless. Therefore, work done is stored in the spring in the form of elastic potential energy of the spring. Thus, potential energy of a spring is the energy associated with the state of compression or expansion of an elastic spring. **71.** The potential energy of a body is increases in which of the following cases? (a) If work is done by conservative force (b) If work is done against conservative force (c) If work is done by non-conservative force (d) If work is done against non- conservative force **72.** The potential energy, *i. e.* U(x) can be assumed zero when (a) x = 0(b) gravitational force is constant (c) infinite distance from the gravitational source (d) All of the above 73. The ratio of spring constants of two springs is 2: 3. What is the ratio of their potential energy, if they are stretched by the same force? (a) 2: 3 (b) 3: 2 (c) 4:9 (d) 9: 4 **74.** The potential energy of a spring increases by 15 / when stretched by 3 cm. If it is stretched by 4 cm, the increase in potential energy is (a) 27 J (b) 30 J (d) 36 J (c) 33 J

~ 9 ~

m A

75. The potential energy of a spring when stretched through a distance *x* is 10 J. What is the amount of work done on the same spring to stretch it through an additional distance *x*?
(a) 10 J
(b) 20 J
(c) 30 J
(d) 40 J

Direction Answer the questions from 76-80 on the following case.


Principle of Conservation of Energy:

Total energy of an isolated system always remains constant. Since, the universe as a whole may be viewed as an isolated system, total energy of the universe is constant. If one part of the universe loses energy, then other part must gain an equal amount of energy. The principle of conservation of energy cannot be proved as such. However, no violation of this principle has been observed.

76. When we rub two flint stones together, got them to heat up and to ignite a heap of dry leaves in the form of

- (a) chemical energy
- (c) heat energy (d)
- (b) sound energy(d) electrical energy

77. Which graph represents conservation of total mechanical energy?

78. In the given curved road, if particle is released from *A*, then

(a) kinetic energy at *B* must be *mgh*

- (b) kinetic energy at *B* must be zero
- (c) kinetic energy at *B* must be less than *mgh*
- (d) kinetic energy at *B* must not be equal to potential energy

79. *U* is the potential energy, *K* is the kinetic energy and *E* is the mechanical energy. Which of the following is not possible for a stable system?

(a) U > E (b) U < E (c) E > K (d) K > E

80. *A* body of mass 5 kg is thrown vertically up with a kinetic energy of 490 J. The height at which the kinetic energy of the body becomes half of the original value is

(a) 12.5 m	(b) 10	(c) 2.5 m	(d) 5 m
------------	--------	-----------	---------

ANSWERS

Multiple Choice Questions

01. (c) 02. (c) 03. (b) 04. (c) 05. (b) 06. (d) 07. (d) 08. (b) 09. (c) 10. (d) 11. (a) 12. (d) 13. (a) 14. (a) 15. (c) 16. (b) 17. (c) 18. (a) 19. (a) 20. (d) 21. (c) 22. (c) 23. (b) 24. (a) 25. (b) 26. (c) 27. (b) 28. (a) 29. (c) 30. (d) 31. (d) 32. (c) 33. (b) 34. (a) 35. (b) 36. (b) 37. (b) 38. (c) 39. (c) 40. (a) 41. (b) 42. (a) 43. (d) 44. (c) 45. (b) 46. (b) 47. (d) 48. (b) 49. (d) 50. (b) 51. (c)

Assertion-Reasoning MCQs

52. (a) 53. (c) 54. (d) 55. (c) 56. (c) 57. (b) 58. (b) 59. (a) 60. (c)

Case Based MCQs

61. (a) 62. (d) 63. (b) 64. (d) 65. (c) 66. (d) 67. (c) 68. (a) 69. (c) 70. (d)

71. (b) 72. (d) 73. (b) 74. (a) 75. (c) 76. (a) 77. (c) 78. (a) 79. (a) 80. (d)